Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Fernández-Polo, Francisco J
Moreno, Juan Martı́nez
and
Peralta, Antonio M
2004.
Geometric characterization of tripotents in real and complex JB∗-triples.
Journal of Mathematical Analysis and Applications,
Vol. 295,
Issue. 2,
p.
435.
Ibragimov, M. M.
Kudaybergenov, K. K.
Tleumuratov, S. Zh.
and
Seypullaev, Zh. Kh.
2013.
Geometric description of the preduals of atomic commutative von Neumann algebras.
Mathematical Notes,
Vol. 93,
Issue. 5-6,
p.
715.
Ibragimov, M. M.
and
Kudaibergenov, K. K.
2013.
Geometric description of L 1-Spaces.
Russian Mathematics,
Vol. 57,
Issue. 9,
p.
16.
Ибрагимов
Ubragimov
Кудайбергенов
Kudaybergenov
Тлеумуратов
Tleumuratov
Сейпуллаев
and
Sejpullaev
2013.
Геометрическое описание предсопряженного пространства к атомической коммутативной алгебре фон Неймана.
Математические заметки,
Vol. 93,
Issue. 5,
p.
728.
Ibragimov, M. M.
Kudaibergenov, K. K.
and
Seipullaev, Zh. Kh.
2018.
Facially Symmetric Spaces and Predual Ones of Hermitian Part of von Neumann Algebras.
Russian Mathematics,
Vol. 62,
Issue. 5,
p.
27.
Fernández-Polo, Francisco J.
2020.
The minimax principle and related topics in the Jordan setting.
Linear Algebra and its Applications,
Vol. 604,
Issue. ,
p.
293.
Kudaybergenov, Karimbergen Kadirbergenovich
and
Seypullaev, Jumabek Khamidullaevich
2020.
Характеризация JBW-алгебр с сильно гранево симметричным
предсопряженным пространством.
Математические заметки,
Vol. 107,
Issue. 4,
p.
539.
Kudaybergenov, K. K.
and
Seipullaev, Zh. Kh.
2020.
Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space.
Mathematical Notes,
Vol. 107,
Issue. 3-4,
p.
600.
Kudaybergenov, K.
and
Seypullaev, J.
2020.
Description of Facially Symmetric Spaces with Unitary
Tripotents.
Siberian Advances in Mathematics,
Vol. 30,
Issue. 2,
p.
117.
Friedman, Yaakov
and
Peralta, Antonio M.
2022.
Representation of symmetry transformations on the sets of tripotents of spin and Cartan factors.
Analysis and Mathematical Physics,
Vol. 12,
Issue. 1,