Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-19T08:03:40.978Z Has data issue: false hasContentIssue false

VARIABLES AFFECTING THE PRACTICAL USE OF JUVENILE HORMONE ANALOGUES1 FOR CONTROL OF THE WESTERN SPRUCE BUDWORM (CHORISTONEURA OCCIDENTALIS) (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Jacqueline L. Robertson
Affiliation:
Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, California 94701
Richard A. Kimball
Affiliation:
Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, California 94701

Abstract

Variables affecting the efficacy of seven juvenile hormone analogues on western spruce budworm, Choristoneura occidentalis Freeman, were examined in laboratory bioassays. Those tested were epofenonane, hydroprene, kinoprene, methoprene, triprene, ZR-587, and ZR-1662. Selected intrinsic variables—stage of development, sex, and extent of direct contact with sprays—were examined in bioassays involving direct exposure of third instars, direct applications to three pupal age classes, and indirect applications to sixth instars. An extrinsic variable, persistence in the environment, was assessed by determining the residual effectiveness of each juvenile hormone analogue to sixth instars. Sixth instars, rather than third instars, appeared to be the target of choice for two reasons. First, less active ingredient would be required for equivalent mortality by the time of adult eclosion. Second, greater, more consistent, deleterious reproductive effects coupled with a lower incidence of sexual variation in lethal effectiveness, would occur. Pharate pupae and untanned pupae were very susceptible to most of the chemicals and may provide a secondary target for the primary target, sixth instars. The importance of direct chemical-insect contact in achieving maximum reproductive inhibition suggests that these chemicals might be used most effectively in ways such that contact can be maximized, as in ground applications. Finally, some juvenile hormone analogues such as epofenonane and ZR-1662 appeared to persist long enough to permit flexibility with respect to instar distribution in a population.

Résumé

Les variables influençant l’efficacité de sept analogues de l’hormone juvénile sur la tordeuse occidentale de l’épinette, Choristoneura occidentalis Freeman, ont été étudiées en laboratoire. Les analogues testés étaient : épofenonane, hydroprene, kinoprene, methoprene, triprene, ZR-587, et ZR-1662. Les variables intrinsèques choisies—stade du développement, sexe, et degré d’exposition aux pulvérisations d’analogues—ont été étudiées en effectuant des tests impliquant soit l’exposition directe pour les stades trois, soit l’application directe à trois classes d’âges différents pour les pupes, ou soit l’application indirecte pour les stades six. Une variable extrinsèque, la rémanence dans le milieu, a été étudiée en mesurant l’efficacité résiduelle de chaque analogue sur des stades six. Le sixième plutôt que le troisième stade a été retenu comme cible préférable pour deux raisons. Premièrement, la quantité d’ingrédient actif requise pour un même niveau de mortalité au moment de l’émergence des adultes serait moindre. Deuxièmement, on peut s’attendre à des effets négatifs sur la reproduction qui soient plus prononcés et moins variables, combinés à une différence d’efficacité léthale liée au sexe moins grande. Les pupes pharates ou non tannées étaient très sensibles à la plupart des analogues et pourraient représenter une cible secondaire par rapport à la cible primaire, le stade six. L’importance du contact direct de l’analogue pour obtenir l’inhibition maximale de la reproduction indiquerait que pour obtenir un maximum d’efficacité, leur mode d’utilisation devrait permettre un maximum de contact; par exemple, des applications au sol. Enfin, des analogues comme l’epofenonane et le ZR-1662 ont semblé persister suffisamment longtemps pour permettre une variation quant au stade de développement auquel se trouve une population au moment du traitement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dixon, W. J. 1977. Biomedical Computer Programs (BMDP) Manual. University of California Press, Berkeley. 880 pp.Google Scholar
Furniss, R. L. and Carolin, V. M.. 1977. Western forest insects. Misc. Publ. U.S. Dep. Agric. 1339. 654 pp.Google Scholar
Guenther, W. C. 1964. Analysis of Variance. Prentice-Hall, Englewood Cliffs, New Jersey. 199 pp.Google Scholar
Hinton, H. E. 1958. Concealed phases of metamorphosis in insects. Sci. Progr. 182: 260275.Google Scholar
Lyon, R. L., Richmond, C. E., Robertson, J. L., and Lucas, B. A.. 1972. Rearing diapause and diapause-free western spruce budworm (Choristoneura occidentalis) (Lepidoptera: Tortricidae) on an artificial diet. Can. Ent. 104: 417426.CrossRefGoogle Scholar
Outram, I. 1972. Effects of synthetic juvenile hormone on adult emergence and reproduction of the female spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae.) Can. Ent. 104: 271273.CrossRefGoogle Scholar
Pipa, R. L. 1963. Studies on the hexapod nervous system. VI. Ventral nerve cord shortening: a metamorphic process in Galleria mellonella (L.). Biol. Bull. 124: 293302.CrossRefGoogle Scholar
Retnakaran, A. 1970. Blocking of embryonic development in the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) by compounds with juvenile hormone activity. Can. Ent. 102: 15921596.CrossRefGoogle Scholar
Retnakaran, A. 1973. Hormonal induction of supernumerary instars in the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae.) Can. Ent. 105: 459461.CrossRefGoogle Scholar
Retnakaran, A. 1975. Hormone-mimetic and pharmacological effects of some juvenile hormone analogs on the embryonic respiration of the spruce budworm, Choristoneura fumiferana (Clemens). Comp. Biochem. Physiol. 50C: 8187.Google Scholar
Robertson, J. L. 1979. How to rear the western spruce budworm. Misc. Publ. U.S. Dep. Agric., Canada-United States Spruce Budworms Program. 18 pp.Google Scholar
Retnakaran, A. 1980. Contact and feeding toxicities of acephate and carbaryl to larval stages of the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Can. Ent. 112: 10011006.Google Scholar
Robertson, J. L. and Haverty, M. I.. 1981. Multiphase laboratory bioassays to select chemicals for field-testing on the western spruce budworm. J. econ. Ent. 74: 148153.CrossRefGoogle Scholar
Robertson, J. L. and Kimball, R. A.. 1979 a. Effects of insect growth regulators on the western spruce budworm (Choristoneura occidentalis) (Lepidoptera: Tortricidae): I. Lethal effects of last instar treatments. Can. Ent. 111: 13611368.CrossRefGoogle Scholar
Retnakaran, A. 1979 b. Effects of insect growth regulators on the western spruce budworm (Choristoneura occidentalis) (Lepidoptera: Tortricidae): II. Fecundity and fertility reduction following last instar treatments. Can. Ent. 111: 13691380.Google Scholar
Robertson, J. L. and Rappaport, N. G.. 1979. Direct, indirect, and residual toxicities of insecticide sprays to western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Can. Ent. 111: 12191226.CrossRefGoogle Scholar
Robertson, J. L., Gillette, N. L., Look, M., Lucas, B. A., and Lyon, R. L.. 1976. Toxicity of selected insecticides applied to western spruce budworm. J. econ. Ent. 69: 99104.CrossRefGoogle Scholar
Robertson, J. L., Lyon, R. L., Andrews, T. L., Moellman, E. E., and Page, M.. 1979. Moellman spray chamber: versatile research tool for laboratory bioassays. Res. Note PSW-335. 6 pp., illus. Pacific Southwest Forest and Range Exp. Stn., Forest Serv., U.S. Dep. Agric., Berkeley, Calif.Google Scholar
Russell, R. M., Robertson, J. L., and Savin, N. E.. 1977. POLO: A new computer program for probit analysis. Bull. ent. Soc. Am. 23: 209213.Google Scholar
Savin, N. E., Robertson, J. L., and Russell, R. M.. 1977. A critical evaluation of bioassay in insecticide research: likelihood ratio tests of dose-mortality regression. Bull. ent. Soc. Am. 23: 257266.Google Scholar
Schwartz, J. L. 1971. Inhibition of nerve cord metamorphosis in the western spruce budworm Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae) by juvenile hormone analogs. Gen. Comp. Endocrinol. 17: 293299.CrossRefGoogle Scholar
Siddall, J. B. 1976. Insect growth regulators and insect control: a critical appraisal. Environ. Health Perspect. 14: 119126.CrossRefGoogle ScholarPubMed
Slama, K., Romanuk, M., and Sorm, F.. 1974. Insect hormones and bioanalogues. Springer-Verlag, New York. 477 pp.CrossRefGoogle Scholar
Staal, G. B. 1975. Insect growth regulators with juvenile hormone activity. A. Rev. Ent. 20: 417460.CrossRefGoogle ScholarPubMed
Steel, R. G. and Torrie, J. A.. 1960. Principles and Procedures of Statistics. McGraw Hill, N.Y.481 pp.Google Scholar