Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-21T15:45:58.649Z Has data issue: false hasContentIssue false

SUSCEPTIBILITY OF THE BLACK SPRUCE CONE MAGGOT, STROBILOMYIA APPALACHENSIS MICHELSEN (DIPTERA: ANTHOMYIIDAE) TO ENTOMOPATHOGENIC NEMATODES (NEMATODA: STEINERNEMATIDAE)

Published online by Cambridge University Press:  31 May 2012

J.D. Sweeney
Affiliation:
Natural Resources Canada, Canadian Forest Service — Maritimes Region, PO Box 4000, Fredericton, New Brunswick, Canada E3B 5P7
G.N. Gesner
Affiliation:
Natural Resources Canada, Canadian Forest Service — Maritimes Region, PO Box 4000, Fredericton, New Brunswick, Canada E3B 5P7

Abstract

Larvae of the black spruce cone maggot, Strobilomyia appalachensis, were infected and killed by Steinernema carpocapsae (Weiser) All and Umeå strains, S. feltiae (Filipjev) (= bibionis) strain 27, and S. glaseri Steiner strain 326, in laboratory tests. After formation of puparia, however, cone maggots were practically resistant to all species and strains tested. Very few or no maggots were infected when nematodes were sprayed on or injected into infested spruce cones. The survival, activity, and infectivity of infective juveniles held in an aerated infusion of black spruce cones were significantly lower compared with those held in aerated water. In peat–sand columns, the proportion of larvae infected with S. feltiae, but not S. carpocapsae Umeå strain, was significantly greater when larvae were dropped immediately or 1 day following nematode application compared with 1 day before or 3 days following nematode application. Our results suggest that, in field trials for cone maggot suppression, nematodes should be applied within a day prior to larval drop and that repeated applications may be required for persistence of sufficient infectivity.

Résumé

Dans des essais en laboratoire, des larves de la mouche granivore de l’épinette noire (Strobilomyia appalachensis) ont été infectées et tuées par les nematodes Steinernema carpocapsae (Weiser) souches All et Umeå, S. feltiae (Filipjev) (= bibionis) souche 27 et S. glaseri souche 326. Après la formation du puparium, les mouches granivores étaient toutefois pratiquement insensibles à toutes les espèces et souches testées. Le taux d’infection était très faible ou nul lorsque les nématodes étaient pulvérisés sur des cônes d’épinette infestés ou injectés dans de tels cônes. La survie, l’activité et l’infectivité de juvéniles infectieux conservés dans une infusion aérée de cônes d’épinette noire étaient significativement inférieures à celles qui ont été observées chez d’autres juvéniles gardés dans de l’eau aérée. Dans des colonnes de tourbe-sable, le taux d’infection par S. feltiae, mais non pas par S. carpocapsae souche Umeå, était significativement plus élevé lorsque les larves étaient introduites immédiatement ou 1 jour après l’application de nematodes que lorsqu’elles l’étaient 1 jour avant ou 3 jours après l’application des nematodes. Nos résultats donnent à croire que dans les essais d’utilisation sur le terrain des nematodes contre la mouche granivore, l’application des nematodes devrait être effectuée au plus une journée avant que les larves se laissent tomber au sol. En outre, il pourrait être nécessaire de répéter les applications afin de maintenir un taux d’infectivité suffisant.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alatorre-Rosas, R.J., and Kaya, H.K.. 1990. Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. Journal of Invertebrate Pathology 55: 179188.Google Scholar
Beavers, J.B., and Calkins, C.O.. 1984. Susceptibility of Anastrepha suspensa (Diptera: Tephritidae) to steinernematid and heterorhabditid nematodes in laboratory studies. Environmental Entomology 13: 137139.Google Scholar
Begley, J.W. 1990. Efficacy against insects in habitats other than soil. pp. 215231in Gaugler, R., and Kaya, H.K. (Eds.), Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, FL.Google Scholar
Bracken, G.K. 1990. Susceptibility of first-instar cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), to strains of the entomogenous nematodes Steinernema feltiae Filipjev, S. bibionis (Bovien), Heterorhabditis bacteriphora Poinar, and H. heliothidis (Khan, Brooks, and Hirschmann). The Canadian Entomologist 122: 633639.Google Scholar
Choo, H.Y., Kaya, H.K., Burlando, T.M., and Gaugler, R.. 1989. Entomopathogenic nematodes: Host-finding ability in the presence of plant roots. Environmental Entomology 18: 11361140.Google Scholar
Eidt, D.C., and Thurston, G.S.. 1995. Physical deterrents to infection by entomopathogenic nematodes in wireworms (Coleoptera: Elateridae) and other soil insects. The Canadian Entomologist 127: 423429.Google Scholar
Fraenkel, G., and Bhaskaran, G.. 1973. Pupariation and pupation in cyclorrhaphous flies (Diptera): Terminology and interpretation. Annals of the Entomological Society of America 66: 418422.Google Scholar
Gaugler, R. 1988. Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agriculture, Ecosystems and Environment 24: 351360.Google Scholar
Georgis, R., and Gaugler, R.. 1991. Predictability in biological control using entomopathogenic nematodes. Journal of Economic Entomology 84: 713720.Google Scholar
Glazer, I., Liran, N., and Steinberger, Y.. 1991. A survey of entomopathogenic nematodes (Rhabtitida) in the Negev desert. Phytoparasitica 19: 291300.CrossRefGoogle Scholar
Glazer, I., and Navon, A.. 1990. Activity and persistence of entomopathogenic nematodes tested against Heliothis armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 83: 17951800.Google Scholar
Harris, M.A., Begley, J.W., and Warkentin, D.L.. 1990. Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) suppression with foliar applications of Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) and abamectin. Journal of Economic Entomology 83: 23802384.Google Scholar
Hedlin, A.F., Yates, H.O. III, Tovar, D.C., Ebel, B.H., Koerber, T.W., and Merkel, E.P.. 1980. Cone and Seed Insects of North American Conifers. Canadian Forestry Service; United States Department of Agriculture, Forest Service; Secretaria de Agricultura y Recoursos Hidraulicos, Mexico. 122 pp.Google Scholar
Kaya, H.K., and Gaugler, R.. 1993. Entomopathogenic nematodes. Annual Review of Entomology 38: 181206.Google Scholar
Kramer, P.J., and Kozlowski, T.T.. 1979. Physiology of Woody Plants. Academic Press, Inc., New York, NY. 811 pp.Google Scholar
Kung, S.-P., Gaugler, R., and Kaya, H.K.. 1990. Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology 55: 401406.Google Scholar
Lindegren, J.E., and Vail, P.V.. 1986. Susceptibility of Mediterranean fruit fly, melon fly, and oriental fruit fly (Diptera: Tephritidae) to the entomogenous nematode Steinernema feltiae in laboratory tests. Environmental Entomology 15: 465468.Google Scholar
Lindegren, J.E., Wong, T.T., and McInnis, D.O.. 1990. Response of mediterranean fruit fly (Diptera: Tephritidae) to the entomogenous nematode Steinernema feltiae in field tests in Hawaii. Environmental Entomology 19: 383386.Google Scholar
Mauleon, H., Briand, S., Laumond, C., and Bonifassi, É.. 1993. Utilisation d'enzymes digestives pour l'étude du parasitisme des Steinernema et des Heterorhabditis envers les larves d'insectes. Fundamental and Applied Nematology 16: 185191.Google Scholar
Moyle, P.L., and Kaya, H.K.. 1981. Dispersal and infectivity of the entomogenous nematode, Neoplectana carpocapsae Weiser (Rhabditida: Steinernematidae), in sand. Journal of Nematology 13: 294300.Google Scholar
Mullens, B.A., Meyer, J.A., and Cyr, T.L.. 1987. Infectivity of insect-parasitic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) for larvae of some manure-breeding flies (Diptera: Muscidae). Environmental Entomology 16: 769773.Google Scholar
Renn, N., Barson, G., and Richardson, P.N.. 1985. Preliminary laboratory tests with two species of entomophilic nematodes for control of Musca domestica in intensive animal units. Annals of Applied Biology 106: 229233.Google Scholar
Richardson, P.N. 1987. Susceptibility of mushroom pests to the insect-parasitic nematodes Steinernema feltiae and Heterorhabditis heliothidis. Annals of Applied Biology 111: 433438.CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS® User's Guide: Statistics, Version 5 Edition. Cary, NC. 956 pp.Google Scholar
SAS Institute Inc. 1993. SAS/STAT® Software: The GENMOD Procedure, Release 6.09. SAS® Technical Report P-243. Cary, NC. 88 pp.Google Scholar
Shetlar, D.J., Suleman, P.E., and Georgis, R.. 1988. Irrigation and use of entomogenous nematodes, Neoplectana spp. and Heterorhabditis heliothidis (Rhabditida: Steinernematidae and Heterorhabditidae), for control of Japanese beetle (Coleoptera: Scarabaeidae) grubs in turfgrass. Journal of Economic Entomology 81: 13181322.Google Scholar
Sweeney, J.D., and Turgeon, J.J.. 1994. Life cycle and phenology of a cone maggot, Strobilomyia appalachensis Michelsen (Diptera: Anthomyiidae), on black spruce, Picea mariana (Mill.) B.S.P., in eastern Canada. The Canadian Entomologist 126: 4959.Google Scholar
Tripp, H.A., and Hedlin, A.F.. 1956. An ecological study and damage appraisal of white spruce cone insects. Forestry Chronicle 32: 400410.Google Scholar
Turgeon, J.J., and Sweeney, J.D.. 1993. Hosts and distribution of spruce cone maggots (Strobilomyia spp.) (Diptera: Anthomyiidae) and first record of Strobilomyia appalachensis Michelsen in Canada. The Canadian Entomologist 125: 637642.Google Scholar