Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T05:12:24.878Z Has data issue: false hasContentIssue false

Resistance to Hessian fly (Diptera: Cecidomyiidae) in a Canadian spring wheat cultivar1

Published online by Cambridge University Press:  02 April 2012

Ian L. Wise*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
Robert J. Lamb
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
Ronald I.H. McKenzie
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
Jay W. Whistlecraft
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V 4T3
*
2Corresponding author (e-mail: iwise@agr.gc.ca).

Abstract

The Canadian spring wheat (Triticum aestivum L.; Poaceae) cultivar ‘Superb’ was less susceptible to damage by Hessian fly, Mayetiola destructor (Say), than the spring wheat cultivars ‘AC Barrie’, ‘AC Foremost’, ‘McKenzie’, ‘AC Domain’, and ‘Glenlea’ in Manitoba. The partial resistance of ‘Superb’ was similar, at the seedling stage, to that of ‘Guard’, which possesses the resistance gene H18. Females laid eggs readily on all cultivars, providing no evidence for antixenosis, but few larvae developed on seedlings of ‘Superb’ and ‘Guard’, showing that antibiosis against larvae is the mechanism of resistance in these seedlings. In the field, where infestation of spring wheat takes place about 4 weeks after the seedling stage, ‘Guard’ continued to show high levels of resistance, but ‘Superb’ was less resistant, although still more resistant than highly susceptible cultivars. Infested stems of ‘Superb’ and ‘Nordic’ were less likely to break than infested stems of other cultivars, showing that these two cultivars are partially tolerant to infestation. Infested stems of ‘Guard’ and other cultivars showed high levels of stem breakage and are intolerant. Yield losses due to infestation by Hessian fly were mostly caused by the breakage and falling over of infested stems, which prevented the seeds on these stems from being harvested. Infested stems of all susceptible cultivars that remained standing at harvest had lower seed masses and fewer seeds per spike than uninfested stems, which contributed to yield loss. ‘Grandin’, a parent of ‘Superb’, is the probable source of resistance in ‘Superb’, but the pedigree of ‘Grandin’ provides no clue as to the gene(s) involved. The partial antibiosis and tolerance expressed by ‘Superb’ is sufficient to reduce losses to Hessian fly by 65% in comparison with a susceptible cultivar such as ‘AC Barrie’. ‘Superb’ is the first Canadian spring wheat cultivar identified to have an agronomically useful level of resistance to Hessian fly.

Résumé

Au Manitoba, le cultivar canadien ‘Superb’ de blé de printemps (Triticum aestivum L., Poaceae) est moins vulnérable aux ravages de la mouche de Hesse, Mayetiola destructor (Say) que les cultivars de blé de printemps ‘AC Barrie’, ‘AC Foremost’, ‘McKenzie’, ‘AC Domain’ et ‘Glenlea’. La résistance partielle de ‘Superb’ est semblable, au stade de jeune pousse, à celle observée chez ‘Guard’ qui possède le gène de résistance H18. Les femelles pondent spontanément sur tous les cultivars, sans indication d’antixénose, mais peu de larves se développent sur les jeunes pousses de ‘Superb’ et de ‘Guard’, ce qui indique que l’antibiose contre les larves est le mécanisme de résistance qui agit chez les jeunes pousses. Dans les champs, où l’infestation du blé de printemps se produit environ quatre semaines après le stade de jeune pousse, ‘Guard’ continue à être résistant, mais ‘Superb’ l’est moins, bien qu’il soit plus résistant que les cultivars très vulnérables. Les tiges infestées de ‘Suberb’ et de ‘Nordic’ risquent moins de se rompre que les tiges infestées des autres cultivars, ce qui indique que ces deux cultivars sont partiellement tolérants à l’infestation. Les tiges infestées de ‘Guard’ et d’autres cultivars se brisent fréquemment et sont intolérantes. Les pertes de rendement dues à l’infestation de la mouche de Hesse sont causées principalement par la rupture des tiges infestées et de leur recourbement, ce qui empêche la récolte des graines sur ces tiges. Par rapport aux tiges saines, les tiges infestées qui sont encore dressées au moment de la récolte ont des graines de masse réduite et un nombre restreint de graines par épi, ce qui contribue à la perte de rendement. ‘Grandin, un cultivar apparenté à ‘Superb’, est la source probable de la résistance chez ‘Superb’, mais la généalogie de ‘Grandin’ ne fournit aucun indice sur le ou les gènes impliqués. L’antibiose partielle et la tolérance observées chez ‘Superb’ suffisent à réduire de 65 % les pertes dues à la mouche de Hesse par comparaison à un cultivar vulnérable tel que ‘AC Barrie’. ‘Superb’ est le premier cultivar canadien de blé de printemps connu à posséder un niveau de résistance à la mouche de Hesse d’intérêt agronomique.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution 1915 of the Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba.

References

Buntin, G.D. 1999. Hessian fly (Diptera: Cecidomyiidae) injury and loss of winter wheat grain yield and quality. Journal of Economic Entomology, 92: 11901197.CrossRefGoogle Scholar
Byers, R.A., and Gallun, R.L. 1972. Ability of the Hessian fly to stunt winter wheat. I. Effect of larval feeding on elongation of leaves. Journal of Economic Entomology, 65: 955958.CrossRefGoogle Scholar
Cartwright, W.B., and LaHue, D.W. 1944. Testing wheats in the greenhouse for Hessian fly resistance. Journal of Economic Entomology, 37: 385387.CrossRefGoogle Scholar
Cholick, F.A., Steiger, D.K., Hatchett, J.H., Sellers, K.M., Buchenau, G.W., and Keim, D.L. 1984. Registration of Guard wheat. Crop Science, 24: 1215.CrossRefGoogle Scholar
Grover, P.B. 1995. Hypersensitive response of wheat to the Hessian fly. Entomologia Experimentalis et Applicata, 74: 283294.CrossRefGoogle Scholar
Harris, L. 1991. Insect and related pests of cereal crops. The Canadian Agricultural Insect Pest Review, 69: 13.Google Scholar
Hatchett, J.H., Kreitner, G.L., and Elzinga, R.J. 1990. Larval mouthparts and feeding mechanism of the Hessian fly (Diptera: Cecidomyiidae). Annals of the Entomological Society of America, 83: 11371147.CrossRefGoogle Scholar
McCall, M.A. 1934. Developmental anatomy and homologies in wheat. Journal of Agricultural Research, 48: 283321.Google Scholar
McCullough, D.J. 1987. Insect and related pests of cereal crops. The Canadian Agricultural Insect Pest Review, 65: 34.Google Scholar
Mitchener, A.V. 1923. Hessian fly in Manitoba in 1922. Manitoba Agricultural Extension News, 3: 12.Google Scholar
Patterson, F.L., Foster, J.E., Ohm, H.W., Hatchett, J.H., and Taylor, P.L. 1992. Proposed system of nomenclature for biotypes of Hessian fly (Diptera: Cecidomyiidae) in North America. Journal of Economic Entomology, 85: 307311.CrossRefGoogle Scholar
Ratcliffe, R.H., and Hatchett, J.H. 1997. Biology and genetics of the Hessian fly and resistance in wheat. New Developments in Entomology, 1997: 4756.Google Scholar
SAS Institute Inc. 1989. SAS/STAT user's guide. Version 6. 4th ed. Vols. 1 and 2. SAS Institute Inc., Cary, North Carolina.Google Scholar
Shukle, R.H., Grover, P.B., and Mocelin, G. 1992. Responses of susceptible and resistant wheat associated with Hessian fly (Diptera: Cecidomyiidae) infestation. Environmental Entomology, 21: 845853.CrossRefGoogle Scholar
Turnock, W.J., and Timlick, B.H. 1990. Insect and related pests of cereal crops. The Canadian Agricultural Insect Pest Review, 68: 14.Google Scholar
USDA-ARS. 2003. Germplasm Resources Information Network (GRIN) [online database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Available from http://www.ars-grin.gov/.Google Scholar
Wolfe, R.I., Tekauz, A., and Johnston, W.H. 1978. The response of different wheat and barley varieties to date of seeding. In Proceedings of the Annual Conference of Manitoba Agronomists, Winnipeg, Manitoba, 12–13 December 1978. Edited by Leisle, D.. University of Manitoba, Winnipeg, Manitoba. pp. 813.Google Scholar