Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:14:28.342Z Has data issue: false hasContentIssue false

INFLUENCE OF TILLAGE SYSTEM, PLANTING DATE, AND OILSEED CRUCIFERS ON FLEA BEETLE POPULATIONS (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

Lindsey R. Milbrath
Affiliation:
Department of Entomology, North Dakota Agricultural Experiment Station, Fargo, North Dakota, USA 58105
Michael J. Weiss
Affiliation:
Department of Entomology, North Dakota Agricultural Experiment Station, Fargo, North Dakota, USA 58105
Blaine G. Schatz
Affiliation:
Carrington Research and Extension Center, Carrington, North Dakota, USA 58421

Abstract

Cultural practices (tillage, planting date) were examined for their effect on flea beetle, Phyllotreta cruciferae (Goeze), populations in three species of oilseed crucifers—Brassica napus L., B. rapa L., and Crambe abyssinica Hochst. No-till appeared to reduce flea beetle densities when compared with conventional tillage. The greater structural diversity of the no-till plots might be interfering with host plant location. Earlier plantings had significantly more flea beetles per plant than later plantings. The Brassica crops yielded higher densities of beetles compared with crambe, supporting earlier reports of crambe resistance.

Résumé

Les effets des procédures agricoles (labours, dates des plantations) sur les populations de l’Altise des crucifères, Phyllotreta cruciferae (Goeze), ont été étudiés chez trois espèces de crucifères oléagineuses, Brassica napus L., B. rapa L. et Crambe abyssinica Hochst. La densité des altises était réduite dans les champs non labourés par comparaison aux champs labourés de façon conventionnelle. La diversité structurale accrue dans les champs non labourés peut perturber la répartition des plants hôtes. Les plantations hâtives semblaient contenir plus d’altises que les plantations plus tardive. Les récoltes de Brassica ont donné des densités plus importantes d’altises que les récoltes de Crambe, ce qui semble confirmer la résistance des plants de Crambe signalée antérieurement.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.D., Peng, C., and Weiss, M.J.. 1992. Crambe, Crambe abyssinica Hochst., as a flea beetle resistant crop (Coleoptera: Chrysomelidae). Journal of Economic Entomology 85: 594600.CrossRefGoogle Scholar
Bodnaryk, R.P. 1992. Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Canadian Journal of Plant Science 72: 12951303.CrossRefGoogle Scholar
Garcia, M.A., and Altieri, M.A.. 1992. Explaining differences in flea beetle Phyllotreta cruciferae Goeze densities in simple and mixed broccoli cropping systems as a function of individual behavior. Entomologia Experimentalis et Applicata 62: 201209.CrossRefGoogle Scholar
Hoag, B.K., and Geiszler, G.N.. 1970. Crambe as a potential crop for western North Dakota. North Dakota Farm Research 27(26): 1618.Google Scholar
Lamb, R.J. 1983. Phenology of flea beetle (Coleoptera: Chrysomelidae) flight in relation to their invasion of canola fields in Manitoba. The Canadian Entomologist 115: 14931502.CrossRefGoogle Scholar
Lamb, R.J. 1984. Effects of flea beetles, Phyllotreta spp. (Chrysomelidae: Coleoptera), on the survival, growth, seed yield and quality of canola, rape and yellow mustard. The Canadian Entomologist 116: 269280.CrossRefGoogle Scholar
Lamb, R.J. 1989. Entomology of oilseed Brassica crops. Annual Review of Entomology 116: 268280.Google Scholar
Lamb, R.J., and Palaniswamy, P.. 1990. Host discrimination by a crucifer-feeding flea beetle, Phyllotreta striolata (F.) (Coleoptera: Chrysomelidae). The Canadian Entomologist 122: 817824.CrossRefGoogle Scholar
Lamb, R.J., Palaniswamy, P., Pivnick, K.A., and Smith, M.A.H.. 1993. A selection of oilseed rape, Brassica rapa L., with resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). The Canadian Entomologist 125: 703713.CrossRefGoogle Scholar
Lamb, R.J., and Turnock, W.J.. 1982. Economics of insecticidal control of flea beetles (Coleoptera: Chrysomelidae) attacking rape in Canada. The Canadian Entomologist 114: 827840.CrossRefGoogle Scholar
Peng, C., and Weiss, M.J.. 1992. Evidence of an aggregation pheromone in the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Journal of Chemical Ecology 18: 875884.CrossRefGoogle ScholarPubMed
Putnam, L.G. 1977. Response of four Brassica seed crop species to attack by the crucifer flea beetle, Phyllotreta cruciferae. Canadian Journal of Plant Science 57: 987989.CrossRefGoogle Scholar
SAS Institute Inc. 1990. SAS/STAT User's Guide, Version 6, Fourth Edition, Volume 2. SAS Institute Inc., Cary, NC.Google Scholar
Tahvanainen, J.O., and Root, R.B.. 1972. The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10: 321346.CrossRefGoogle ScholarPubMed
Weiss, M.J., McLeod, P., Schatz, B.G., and Hanson, B.K.. 1991. Potential for insecticidal management of flea beetle (Coleoptera: Chrysomelidae) on canola. Journal of Economic Entomology 84: 15971603.CrossRefGoogle Scholar
Weiss, M.J., Schatz, B.G., Gardner, J.C., and Nead, B.A.. 1994. Flea beetle (Coleoptera: Chrysomelidae) populations and crop yield in field pea and oilseed rape intercrops. Environmental Entomology 23: 654658.CrossRefGoogle Scholar