Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T05:23:10.666Z Has data issue: false hasContentIssue false

The effect of sex ratio and group density on the mating success of two lines of Delia platura (Diptera: Anthomyiidae)

Published online by Cambridge University Press:  17 November 2023

Allen Bush-Beaupré*
Affiliation:
Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada Department of Biology and Biochemistry, Bishop’s University, 2600 College St, Sherbrooke, Québec, J1M 1Z7, Canada
Marc Bélisle
Affiliation:
Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada Centre d’étude de la forêt (CEF), Pavillon des Sciences biologiques, Université du Québec à Montréal, 141 Président-Kennedy, SB-2987, Montréal, Québec, H2X 1Y4, Canada
Anne-Marie Fortier
Affiliation:
Compagnie de recherche Phytodata Inc., 291 rue de la Coopérative, Sherrington, Québec, J0L 2N0, Canada
François Fournier
Affiliation:
Collège Montmorency, 475 Boulevard de l’Avenir, Laval, Québec, H7N 5H9, Canada
Jade Savage
Affiliation:
Department of Biology and Biochemistry, Bishop’s University, 2600 College St, Sherbrooke, Québec, J1M 1Z7, Canada
*
Corresponding author: Allen Bush-Beaupré; Email: allen.bush-beaupre@usherbrooke.ca

Abstract

The seedcorn maggot, Delia platura (Meigen) (Diptera: Anthomyiidae), is reported as a polyphagous pest species found in numerous crops, including onion, corn, crucifers, and soy. Two morphologically identical genetic lines of D. platura (H- and N-lines) with distinct distribution ranges were recently discovered. Although many biological traits have been described for D. platura, no study to date has been conducted on the life history strategies and reproductive behaviours of its two lines. Using laboratory-reared colonies, this project investigates the effect of group composition (sex ratio and density) on the mating success and preoviposition period of the two D. platura lines. We found a substantial increase in mating success with increasing proportion of males within mating groups for both lines, whereas we found group density had negligible effects. However, the H-line had a lower average mating probability across treatments compared to the N-line. The preoviposition period decreased as the ratio of males to female increased at low density only for the N-line, and the opposite trend was observed at high density for both lines. These results suggest differences between the mating systems of these two lines, thereby highlighting the need for further research into the factors that influence their respective mating systems.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Hervé Colinet

References

Ambrose, D.P., Sahaya Rani, M.R., and Vennison, S.J. 1988. Effect of crowding on the camouflaging behaviour, size, development, oviposition pattern and hatchability of offspring of Acanthaspis pedestris Stål, a potential predator of insect pests (Heteroptera Reduviidae). Monitore Zoologico Italiano – Italian Journal of Zoology, 22: 111120. https://doi.org/10.1080/00269786.1988.10736546.Google Scholar
Avanesyan, A., Jaffe, B.D., and Guédot, C. 2017. Isolating spermathecae and determining mating status of Drosophila suzukii: a protocol for tissue dissection and its applications. Insects, 8: 32. https://doi.org/10.3390/insects8010032.CrossRefGoogle ScholarPubMed
Bahrndorff, S., Kjaersgaard, A., Pertoldi, C., Loeschcke, V., Schou, T.M., Skovgård, H., and Hald, B. 2012. The effects of sex-ratio and density on locomotor activity in the house fly, Musca domestica . Journal of Insect Science, 12: 71. https://doi.org/10.1673/031.012.7101.CrossRefGoogle Scholar
Barclay, H.J. 2005. Mathematical models for the use of sterile insects. In Sterile insect technique: principles and practice in area-wide integrated pest management. Edited by V.A. Dyck, J. Hendrichs, and A. Robinson. Springer, Dordrecht, The Netherlands. Pp. 147–174. https://doi.org/10.1007/1-4020-4051-2_6.CrossRefGoogle Scholar
Benelli, G., Donati, E., Romano, D., Ragni, G., Bonsignori, G., Stefanini, C., and Canale, A. 2016. Is bigger better? Male body size affects wing-borne courtship signals and mating success in the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Insect Science, 23: 869880. https://doi.org/10.1111/1744-7917.12253.CrossRefGoogle Scholar
Brooks, A.R. 1951. Identification of the root maggots (Diptera: Anthomyiidae) attacking cruciferous garden crops in Canada, with notes on biology and control. The Canadian Entomologist, 83: 109120. https://doi.org/10.4039/Ent83109-5.CrossRefGoogle Scholar
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., et al. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9: 378400.10.32614/RJ-2017-066CrossRefGoogle Scholar
Bush-Beaupré, A., Bélisle, M., Fortier, A.-M., Fournier, F., MacDonald, A., and Savage, J. 2023. Reproductive compatibility of two lines of Delia platura (Diptera: Anthomyiidae) [preprint]. Biorxiv. https://doi.org/10.1101/2023.08.01.551352.Google Scholar
Carrillo, J., Danielson-François, A., Siemann, E., and Meffert, L. 2012. Male-biased sex ratio increases female egg laying and fitness in the housefly, Musca domestica . Journal of Ethology, 30: 247254. https://doi.org/10.1007/s10164-011-0317-6.CrossRefGoogle Scholar
Cator, L.J., Wyer, C.A.S., and Harrington, L.C. 2020. Mosquito sexual selection and reproductive control programs. Trends in Parasitology, 2020: 110. https://doi.org/10.1016/j.pt.2020.11.009.Google Scholar
Derocles, S.A.P., Plantegenest, M., Rasplus, J.Y., Marie, A., Evans, D.M., Lunt, D.H., and Le Ralec, A. 2016. Are generalist Aphidiinae (Hym. Braconidae) mostly cryptic species complexes? Systematic Entomology, 41: 379391. https://doi.org/10.1111/syen.12160.CrossRefGoogle Scholar
Desurmont, G.A., Weston, P.A., and Agrawal, A.A. 2014. Reduction of oviposition time and enhanced larval feeding: two potential benefits of aggregative oviposition for the viburnum leaf beetle. Ecological Entomology, 39: 125132. https://doi.org/10.1111/een.12073.CrossRefGoogle Scholar
Downes, J.A. 1969. The swarming and mating flight of Diptera. Annual Review of Entomology, 14: 271298. https://doi.org/10.1146/annurev.en.14.010169.001415.CrossRefGoogle Scholar
Elsensohn, J.E., Aly, M.F.K., Schal, C., and Burrack, H.J. 2021. Social signals mediate oviposition site selection in Drosophila suzukii . Scientific Reports, 11: 110. https://doi.org/10.1038/s41598-021-83354-2.CrossRefGoogle ScholarPubMed
Enders, M.M. 1993. The effect of male size and operational sex ratio on male mating success in the common spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Animal Behaviour, 46: 835846.10.1006/anbe.1993.1269CrossRefGoogle Scholar
Erazo-Garcia, M.P., Sotelo-Proaño, A.R., Ramirez-Villacis, D.X., Garcés-Carrera, S., and Leon-Reyes, A. 2021. Methyl jasmonate–induced resistance to Delia platura (Diptera: Anthomyiidae) in Lupinus mutabilis . Pest Management Science, 77: 53825395. https://doi.org/10.1002/ps.6578.CrossRefGoogle ScholarPubMed
Finch, S. 1989. Ecological considerations in the management of Delia pest species in vegetable crops. Annual Review of Entomology, 34: 117137. https://doi.org/10.1146/annurev.ento.34.1.117.CrossRefGoogle Scholar
Flecker, A.S., Allan, J.D., and McClintock, N.L. 1988. Male body size and mating success in swarms of the mayfly Epeorus longimanus . Holarctic Ecology, 11: 280285.Google Scholar
Fortier, A.-M. 2021. Utilisation et maintien de l’emploi de mouches stériles en remplacement du chlorpyrifos, chez les producteurs d’oignons de la Montérégie [Use and continued use of sterile flies as a replacement for chlorpyrifos, among onion producers in Montérégie]. Available from https://prisme.ca/wpcontent/uploads/2022/02/rapport_final_2.1_2021.pdf [accessed 6 July 2022].Google Scholar
Griffiths, G.C.D. 1993. Anthomyiidae. In Flies of the Nearctic Region. Volume 3, Part 2, Number 15. Edited by G.C.D. Griffiths. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany. Pp. 1417–1632.Google Scholar
Guerra, P.C., Keil, C.B., Stevenson, P.C., Mina, D., Samaniego, S., Peralta, E., et al. 2017. Larval performance and adult attraction of Delia platura (Diptera: Anthomyiidae) in a native and an introduced crop. Journal of Economic Entomology, 110: 186191. https://doi.org/10.1093/jee/tow237.Google Scholar
Hartig, F. 2021. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models (R package, version 0.4.3). Available from https://CRAN.R-project.org/package=DHARMa.Google Scholar
Hassan, M.M., Zain, H.M., Basheer, M.A., Elhaj, H.E.F., and El-Sayed, B.B. 2014. Swarming and mating behavior of male Anopheles arabiensis Patton (Diptera: Culicidae) in an area of the Sterile Insect Technique Project in Dongola, northern Sudan. Acta Tropica, 132, Supplement: S64–S69. https://doi.org/10.1016/j.actatropica.2013.11.013.CrossRefGoogle Scholar
Hendrichs, J., Robinson, A.S., Cayol, J.P., and Enkerlin, W. 2002. Medfly areawide sterile insect technique programmes for prevention, suppression or eradication: the importance of mating behavior studies. The Florida Entomologist, 85: 113.10.1653/0015-4040(2002)085[0001:MASITP]2.0.CO;2CrossRefGoogle Scholar
Hough-Goldstein, J.A. and Hess, K.A. 1984. Seedcorn maggot (Diptera: Anthomyiidae) infestation levels and effects on five crops. Environmental Entomology, 13: 962965. https://doi.org/10.1093/ee/13.4.962.CrossRefGoogle Scholar
Hough-Goldstein, J.A., Hess, K.A., and Cates, S.M. 1987. Group effect on seedcorn maggot (Diptera: Anthomyiidae) mating behavior. Annals of the Entomological Society of America, 80: 520523. https://doi.org/10.1093/aesa/80.4.520.CrossRefGoogle Scholar
Howard, R.J., Allan, J., and Seaman, W.L. 1994. Diseases and pests of vegetable crops in Canada. Edited by R.J. Howard, J. Allan, and W.L. Seaman. Canadian Phytopathological Society and Entomological Society of Canada, Ottawa, Canada. Available from https://phytopath.ca/publications/diseases-of-vegetable-crops-in-canada/ [accessed 23 June 2022].Google Scholar
Ikegawa, Y. and Himuro, C. 2017. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased. Journal of Theoretical Biology, 421: 93100. https://doi.org/10.1016/j.jtbi.2017.03.026 CrossRefGoogle ScholarPubMed
Ishikawa, Y., Mochizuki, A., Ikeshoji, T., and Matsumoto, Y. 1983. Mass-rearing of the onion and seed-corn flies, Hylemya antiqua and H. platura (Diptera: Anthomyiidae), on an artificial diet with antibiotics. Applied Entomology and Zoology, 18: 6269.10.1303/aez.18.62CrossRefGoogle Scholar
Judd, G.J.R. and Borden, J.H. 1992. Aggregated oviposition in Delia antiqua (Meigen): a case for mediation by semiochemicals. Journal of Chemical Ecology, 18: 621635.10.1007/BF00987824CrossRefGoogle ScholarPubMed
Karlsson, K., Eroukhmanoff, F., and Svensson, E.I. 2010. Phenotypic plasticity in response to the social environment: effects of density and sex ratio on mating behaviour following ecotype divergence. PLOS One, 5: 16. https://doi.org/10.1371/journal.pone.0012755.CrossRefGoogle Scholar
Kassambara, A., Kosinki, M., and Biecek, P. 2021. survminer: drawing survival curves using “ggplot2.” (R package, version 0.4.9). Available from https://CRAN.R-project.org/package=survminer.Google Scholar
Kim, H.S., Cho, J.R., Kim, J.J., Lee, M., and Byun, M.W. 2001. Optimal radiation dose of cobalt-60 to improve the sterile insect technique for Delia antiqua, and Delia platura . Journal of Asia-Pacific Entomology, 4: 1116. https://doi.org/10.1016/s1226-8615(08)60095-3.CrossRefGoogle Scholar
Kim, T.H. and Eckenrode, C.J. 1987. Bionomics of the bean seed maggot, Delia florilega (Diptera: Anthomyiidae), under controlled conditions. Environmental Entomology, 16: 881886. https://doi.org/10.1093/ee/16.4.881.CrossRefGoogle Scholar
Kokko, H. and Mappes, J. 2005. Sexual selection when fertilization is not guaranteed. Evolution, 59: 18761885.Google Scholar
Lauer, M.J., Sih, A., and Krupa, J.J. 1996. Male density, female density and inter-sexual conflict in a stream-dwelling insect. Animal Behaviour, 52: 929939.CrossRefGoogle Scholar
Leftwich, P.T., Edward, D.A., Alphey, L., Gage, M.J.G., and Chapman, T. 2012. Variation in adult sex ratio alters the association between courtship, mating frequency and paternity in the lek-forming fruitfly Ceratitis capitata . Journal of Evolutionary Biology, 25: 17321740. https://doi.org/10.1111/j.1420-9101.2012.02556.x.CrossRefGoogle ScholarPubMed
Marie-Orleach, L., Bailey, N.W., and Ritchie, M.G. 2019. Social effects on fruit fly courtship song. Ecology and Evolution, 9: 410416. https://doi.org/10.1002/ece3.4759.CrossRefGoogle ScholarPubMed
Martin, J.S. and McEwen, F.L. 1982. Frequency of mating in the onion maggot Hylemya antiqua (Diptera: Anthomyiidae). The Canadian Entomologist, 114: 647648. https://doi.org/10.4039/Ent114647-7.CrossRefGoogle Scholar
McClanahan, R.J. and Miller, L.A. 1958. Laboratory rearing of the seed-corn maggot, Hylemya cilicrura (Rond.) (Diptera: Anthomyiidae). The Canadian Entomologist, 90: 372374. https://doi.org/10.4039/Ent90372-6.CrossRefGoogle Scholar
Miller, L.A. and McClanahan, R.J. 1960. Life-history of the seed-corn maggot, Hylemya cilicrura (Rond.) and of H. liturata (Mg.) (Diptera: Anthomyiidae) in southwestern Ontario. The Canadian Entomologist 92: 210221. https://doi.org/10.4039/Ent92210-3.CrossRefGoogle Scholar
Mlynarek, J.J., Macdonald, M., Sim, K., Hiltz, K., McDonald, M.R., and Blatt, S. 2020. Oviposition, feeding preferences and distribution of Delia species (Diptera: Anthomyiidae) in eastern Canadian onions. Insects, 11: 110. https://doi.org/10.3390/insects11110780.CrossRefGoogle ScholarPubMed
Oléron Evans, T.P. and Bishop, S.R. 2014. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti . Mathematical Biosciences, 254: 627. https://doi.org/10.1016/j.mbs.2014.06.001.CrossRefGoogle Scholar
Otronen, M. 1996. Effects of seasonal variation in operational sex ratio and population density on the mating success of different sized and aged males in the yellow dung fly, Scathophaga stercoraria . Ethology Ecology and Evolution, 8: 399411. https://doi.org/10.1080/08927014.1996.9522912.CrossRefGoogle Scholar
Renaud, A.K., Savage, J., and Adamowicz, S.J. 2012. DNA barcoding of northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits. BMC Ecology, 12: 24. https://doi.org/10.1186/1472-6785-12-24.CrossRefGoogle ScholarPubMed
Rhainds, M. 2010. Female mating failures in insects. Entomologia Experimentalis et Applicata, 136: 211226. https://doi.org/10.1111/j.1570-7458.2010.01032.x.CrossRefGoogle Scholar
Rhainds, M. 2019. Ecology of female mating failure/lifelong virginity: a review of causal mechanisms in insects and arachnids. Entomologia Experimentalis et Applicata, 167: 7384. https://doi.org/10.1111/eea.12759.CrossRefGoogle Scholar
Savage, J., Fortier, A.-M., Fournier, F., and Bellavance, V. 2016. Identification of Delia pest species (Diptera: Anthomyiidae) in cultivated crucifers and other vegetable crops in Canada. Canadian Journal of Arthropod Identification, 29: 140. https://doi.org/10.3752/cjai.2016.29.Google Scholar
Shelly, T.E., Whittier, T.S., and Kaneshiro, K.Y. 1994. Sterile insect release and the natural mating system of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Annals of the Entomological Society of America, 87: 470481.10.1093/aesa/87.4.470CrossRefGoogle Scholar
Soroka, J.J. and Dosdall, L.M. 2011. Coping with root maggots in Prairie canola crops. Prairie Soils and Crop Journal, 4: 1247.Google Scholar
Therneau, T.M. 2021. survival: a package for survival analysis in R. (R package, version 3.2-13.) Available from https://CRAN.R-project.org/package=survival.Google Scholar
Throne, J.E. and Eckenrode, C.J. 1986. Development rates for the seed maggots, Delia platura and D. florilega (Diptera: Anthomyiidae). Environmental Entomology, 15: 10221027. https://doi.org/10.1093/ee/15.5.1022.CrossRefGoogle Scholar
Ticheler, J., Loosjes, M., and Noorlander, J. 1980. Sterile-insect technique for control of the onion maggot, Delia antiqua. In Integrated control of insect pests in the Netherlands. Edited by A.K. Minks and P. Gruys. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands. Pp. 93–98.Google Scholar
Ulmer, B., Gillott, C., and Erlandson, M. 2003. Conspecific eggs and bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), oviposition site selection. Environmental Entomology, 32: 529534.10.1603/0046-225X-32.3.529CrossRefGoogle Scholar
Vahl, W.K., Boiteau, G., de Heij, M.E., MacKinley, P.D., and Kokko, H. 2013. Female fertilization: effects of sex-specific density and sex ratio determined experimentally for Colorado potato beetles and Drosophila fruit flies. PLOS One, 8: e60381. https://doi.org/10.1371/journal.pone.0060381.CrossRefGoogle ScholarPubMed
Van der Heyden, H., Fortier, A.-M., and Savage, J. 2020. A HRM assay for rapid identification of members of the seedcorn maggot complex (Delia florilega and D. platura) (Diptera: Anthomyiidae) and evidence for variation in temporal patterns of larval occurrence. Journal of Economic Entomology, 113: 29202930. https://doi.org/10.1093/jee/toaa230.CrossRefGoogle Scholar
Weir, L.K., Grant, J.W.A., and Hutchings, J.A. 2011. The influence of operational sex ratio on the intensity of competition for mates. The American Naturalist, 177: 167176. https://doi.org/10.1086/657918.CrossRefGoogle ScholarPubMed
Wilkinson, G.S. and Johns, P. 2005. Sexual selection and the evolution of mating systems in flies. In The evolutionary biology of flies. Columbia University Press, New York, New York, United States of America. Pp. 312339.Google Scholar
Supplementary material: PDF

Bush-Beaupré et al. supplementary material

Bush-Beaupré et al. supplementary material 1

Download Bush-Beaupré et al. supplementary material(PDF)
PDF 389 KB
Supplementary material: PDF

Bush-Beaupré et al. supplementary material

Bush-Beaupré et al. supplementary material 2

Download Bush-Beaupré et al. supplementary material(PDF)
PDF 449.9 KB