Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T04:52:24.266Z Has data issue: false hasContentIssue false

Effect of habitat type and pitfall trap installation on captures of epigaeic arthropod assemblages in the boreal forest

Published online by Cambridge University Press:  26 July 2013

J.A. Colin Bergeron*
Affiliation:
Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
John R. Spence
Affiliation:
Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
W. Jan A. Volney
Affiliation:
Natural Resources Canada, Northern Forestry Centre, 5320 122 Street Northwest, Edmonton, Alberta, Canada T6H 3S5
Jaime Pinzon
Affiliation:
Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
Dustin J. Hartley
Affiliation:
Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, Canada T6G 2H1
*
1Corresponding author (e-mail: cb1@ualberta.ca).

Abstract

It is unrealistic to achieve high-resolution biodiversity inventories required to support local conservation strategies over large areas; however, benchmark associations between arthropods and ecosystem classification can support landscape scale biomonitoring. We investigated habitat associations of ground-dwelling spiders (Araneae), staphylinid beetles (Coleoptera: Staphylinidae), and carabid beetles (Coleoptera: Carabidae) in three forest ecosystems in northwestern Alberta, Canada and also studied the effect of variation in depth of pitfall trap installation on catch. Composition and diversity of all three taxa were correlated with the ecosystem classification map, and 20 species were strong indicators of particular habitats. The black spruce (Picea mariana (Miller) Britton, Sterns, and Poggenburg; Pinaceae) bog supported fewer species and individuals of beetles but this trend was not observed for spiders because of natural history traits associated with their performance in this environment. Pitfall trapping biases were constant among habitats enabling proper comparison of ground-dwelling invertebrate assemblages. Three species of beetles (Agonum retractum LeConte (Coleoptera: Carabidae), Pterostichus brevicornis (Kirby) (Coleoptera: Carabidae), and Quedius velox Smetana (Coleoptera: Staphylinidae)) were disproportionally active beneath the soil surface, as catches were greater in pitfall traps with the lip situated 15–25 cm below the soil surface. Thus, even highly standardised trap placement will influence the concept of biodiversity achieved through pitfall trapping, because some target organisms are disproportionately active in subterranean zones.

Résumé

La connaissance des associations entre les arthropodes épigés et la classification des écosystèmes forestiers peut procurer un inventaire pouvant supporter les stratégies de conservation de la biodiversité sur de grandes superficies. Nous avons examiné les associations des espèces d'araignées (Araneae), de staphylins (Coleoptera : Staphylinidae) et de carabes (Coleoptera: Carabidae) avec trois habitats forestiers du nord-ouest de l'Alberta, Canada. Nous avons aussi étudié l'effet de la variation de profondeur d'installation des pièges fosses sur les captures. La composition et diversité des trois taxa était étroitement reliée au système de classification des écosystèmes forestiers et 20 espèces furent identifiées comme étant fortement indicatrices d'un certain habitat. Le peuplement d’épinette noire (Picea mariana (Miller) Britton, Sterns, and Poggenburg; Pinaceae) supportait moins d'espèces et d'individus de coléoptères mais cette tendance ne fut pas observée pour les araignées parce que certains traits fonctionnels leur permettent de performer dans cet environnement adverse. Les biais des pièges fosses étaient constants entre types forestiers permettant une comparaison juste des assemblages d'invertébrés épigés. Trois coléoptères (Agonum retractum LeConte (Coleoptera: Carabidae), Pterostichus brevicornis (Kirby) (Coleoptera: Carabidae), and Quedius velox Smetana (Coleoptera: Staphylinidae)) étaient disproportionnellement actifs sous la surface du sol, puisque les captures étaient plus élevées dans les pièges avec l'ouverture installée entre 15 et 25 cm sous la surface du sol. Même un placement standard des pièges va influencer la perception de biodiversité mesurée par pièges fosses car certains organismes semblent être principalement actifs sous la surface du sol.

Type
Biodiversity & Evolution
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Keith Summerville

References

Adis, J. 1979. Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger, 202: 177184.Google Scholar
Ahti, T., Hämet-Ahti, L., Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici, 5: 169210.Google Scholar
Aitchison-Benell, C.W. 1994. Bog arachnids (Araneae, Opiliones) from Manitoba taiga. In Terrestrial arthropods of peatlands, with particular reference to Canada. Volume 169. Edited by A.T. Finnamore and S.A. Marshall. Memoirs of the Entomological Society of Canada, Ontario, Ottawa, Canada. Pp. 2131.Google Scholar
Aitchison-Benell, C.W.Dondale, C.D. 1990. A checklist of Manitoba spiders (Araneae) with notes on geographic relationships. Le Naturaliste Canadien, 117: 215237.Google Scholar
Anderson, M.J.Legendre, P. 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. Journal of Statistical Computation and Simulation, 62: 271303.CrossRefGoogle Scholar
Anderson, M.J.Willis, T.J. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84: 511525.CrossRefGoogle Scholar
Barnes, B.V. 1984. Forest ecosystem classification in Baden-Würtenburg, Germany. In Symposium proceedings forest land classification: experience, problems, perspectives Edited by J.G. Bockheim. NCR102 North Central Forest Soils Committee, Society of American Foresters, United States Department of Agriculture Forest Service and United States Department of Agriculture Soil Conservation Service, Madison, Wisconsin, United States of America. Pp. 4965.Google Scholar
Beckingham, J.D., Corns, I.G.W., Archibald, J.H. 1996. Field guide to ecosites of west-central Alberta, Natural Resources Canada, Canadian Forest Service, Northwest Region, Northern Forestry Centre, Edmonton, Alberta, Canada, Special Report 9.Google Scholar
Bergeron, J.A.C., Blanchet, F.G., Spence, J.R., Volney, W.J.A. 2012. Ecosystem classification and inventory maps as surrogates for ground beetle assemblages in boreal forest. Journal of Plant Ecology, 5: 97108.CrossRefGoogle Scholar
Bergeron, J.A.C., Spence, J.R., Volney, W.J.A. 2011. Landscape patterns of species-level association between ground-beetles and overstory trees in boreal forests of western Canada (Coleoptera, Carabidae). Zookeys, 147: 577600.CrossRefGoogle Scholar
Briggs, J.B. 1961. A comparison of pitfall trapping and soil sampling in assessing populations of two species of ground beetles (Col.: Carabidae). East Malling Research Station Annual Report, 48: 108112.Google Scholar
Buddle, C.M. 2000. Life history of Pardosa moesta and Pardosa mackenziana (Araneae, Lycosidae) in central Alberta, Canada. Journal of Arachnology, 28: 319328.CrossRefGoogle Scholar
Buddle, C.M., Beguin, J., Bolduc, E., Mercado, A., Sackett, T.E., Duncan Selby, R., et al. 2005. The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. The Canadian Entomologist, 137: 120127.CrossRefGoogle Scholar
Buddle, C.M.Draney, M.L. 2004. Phenology of linyphiids in an old-growth deciduous forest in central Alberta, Canada. Journal of Arachnology, 32: 221230.CrossRefGoogle Scholar
Buddle, C.M., Langor, D.W., Pohl, G.R., Spence, J.R. 2006. Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biological Conservation, 128: 346357.CrossRefGoogle Scholar
Buddle, C.M., Spence, J.R., Langor, D.W. 2000. Sucession of boreal spider assemblages following wildfire and harvesting. Ecography, 23: 424436.CrossRefGoogle Scholar
Campbell, J.M. 1982. A revision of the North American Omaliinae (Coleoptera: Staphylinidae). The genus Acidota Stephens. The Canadian Entomologist, 114: 10031029.CrossRefGoogle Scholar
Campbell, J.M. 1984. A revision of the North American Omaliinae (Coleoptera: Staphylinidae). The genera Arpedium Erichson and Eucnecosum Reitter. The Canadian Entomologist, 116: 487527.CrossRefGoogle Scholar
Comer, P., Faber-Langendoen, D., Evans, R., Gawler, S., Josse, C., Kittel, G., et al. 2003. Ecological systems of the United States: a working classification of U.S. terrestrial systems. NatureServe, Arlington, Virginia, United States of America.Google Scholar
Cong, S., Ashworth, A.C., Schwert, D.P. 1996. Fossil beetle evidence for a short warm interval near 40,000 yr B.P. at Titusville, Pennsylvania. Quaternary Research, 45: 216225.CrossRefGoogle Scholar
Decae, A.E. 1987. Dispersal: ballooning and other mechanisms. In Ecophysiology of spiders Edited by W. Nentwing. Springer Verlag, Berlin, Germany. Pp. 348356.CrossRefGoogle Scholar
Digweed, S.C., Currie, C.R., Carcamo, H.A., Spence, J.R. 1995. Digging out the “digging-in effect” of pitfall traps influences of depletion and disturbance on catches of ground beetles. Pedobiologia, 39: 561576.Google Scholar
Dondale, C.D.Redner, J.H. 1990. The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska, Araneae: Lycosidae, Pisauridae, and Oxyopidae. The Insects and Arachnids of Canada, 17: 1383.Google Scholar
Dufrêne, M.Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Elias, S.A. 1992. Late quaternary beetle faunas of southwestern Alaska: evidence of a refugium for mesic and hygrophilous species. Arctic Alpine Research, 24: 133144.CrossRefGoogle Scholar
Esch, E.D., Jacobs, J.M., Bergeron, C., Spence, J.R. 2008. Correcting for detection biases in the pitfall trapping of ground beetles (Coleoptera: Carabidae). In Back to the roots or back to the future? Toward a new synthesis between taxonomic, ecological and bigeographical approaches in Carabidology: proceedings of the XIII European Carabidologists meeting, Blagoevgrad, Bulgaria, 20–24 August 2007 Edited by L. Penev, T. Erwin and T. Assman. Pensoft Publishers, Sofia, Bulgaria. Pp. 385395.Google Scholar
Expert Committee on Soil Survey. 1983. The Canada soil information system (CANSIS): manual for describing soils in the field, Edited by J.H. Day. Land Resource Research Institute, Agriculture Canada, Ottawa, Ontario, Canada.Google Scholar
Franke, U., Friebe, B., Beck, L. 1988. Methodisches zur Ermittlung der Siedlungsdichte von Bodentieren aus Quadratproben und Barberfallen. Pedobiologia, 32: 253264.CrossRefGoogle Scholar
Gandhi, K.J.K., Spence, J.R., Langor, D.W., Mortantini, L.E., Cryer, K. 2004. Harvest retention patches as analogues of fire residuals for litter-dwelling beetles in northern coniferous forests. The Canadian Journal of Forest Research, 34: 13191331.CrossRefGoogle Scholar
Gaston, G.G., Bradley, P.M., Vinson, T.S., Kolchugina, T.P. 1997. Forest ecosystem modeling in the Russian Far East using vegetation and land-cover regions identified by classification of GVI. Photogrammetric Engineering and Remote Sensing, 63: 5158.Google Scholar
Greenslade, P.J.M. 1964. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). Journal of Animal Ecology, 33: 301310.CrossRefGoogle Scholar
Grossman, D.H., Faber-Langendoen, D., Weakley, A.W., Anderson, M., Bourgeron, P., Crawford, R., et al. 1998. International classification of ecological communities: terrestrial vegetation of the United States. AVolume I: the national vegetation classification standard. The Nature Conservancy, Arlington, Virginia, United States of America.Google Scholar
Halsall, N.B.Wratten, S.D. 1988. The efficiency of pitfall trapping for polyphagous predatory Carabidae. Ecological Entomology, 13: 293299.CrossRefGoogle Scholar
Hoebeke, E.R. 1992. Taxonomy and distribution of the athetine genus Lypoglossa Fenyes (Coleoptera: Staphylinidae: Aleocharinae) in North America, with description of a new species. Journal of the New York Entomological Society, 100: 381398.Google Scholar
Honek, A. 1997. The effect of temperature on the activity of Carabidae (Coleoptera) in a fallow field. European Journal of Entomology, 94: 97104.Google Scholar
Ivie, W. 1969. North American spiders of the genus Bathyphantes (Araneae, Linyphiidae). American Museum Novitates, 2364: 170.Google Scholar
Jacobs, J. 2012. Individual based rarefaction in R [online]. Available from http://www.jennajacobs.org/R/rarefaction.html [accessed 29 March 2013].Google Scholar
Jacobs, J.M., Work, T.T., Spence, J.R. 2008. Influences of succession and harvest intensity on ground beetles (Coleoptera: Carabidae) populations in the boreal mixed-wood forests of Alberta, Canada: species matter. In Back to the roots or back to the future? Toward a new synthesis between taxonomic, ecological and bigeographical approaches in carabidology. Proceedings of the XIII European Carabidologists meeting, Blagoevgrad, Bulgaria, 20–24 August 2007. Edited by L. Penev, T. Erwin and T. Assman. Pentsoft Publishers, Sofia, Bulgaria. Pp. 425–450.Google Scholar
Jonsson, B.G.Jonsell, M. 1999. Exploring potential biodiversity indicators in boreal forests. Biodiversity and Conservation, 8: 14171433.CrossRefGoogle Scholar
Klimaszewski, J.D. 2000. Diversity of the rove beetles in Canada and Alaska (Coleoptera, Staphylinidae). Mémoires de la Société Royale Belge d'Entomologie, 39: 3126.Google Scholar
Klimaszewski, J., Langor, D.W., Work, T.T., Hammond, J.H.E., Savard, K. 2008. Smaller and more numerous harvesting gaps emulate natural forest disturbances: a biodiversity test case using rove beetles (Coleoptera, Staphylinidae). Diversity and Distribution, 14: 969982.CrossRefGoogle Scholar
Koivula, M., Kotze, D.J., Hiisivuori, L., Rita, H. 2003. Pitfall trap efficiency: do trap size collecting fluid and vegetation structure matter? Entomologica Fennica, 14: 114.CrossRefGoogle Scholar
Koponen, S. 1987. Communities of ground-living spiders in six habitats on a mountain in Québec, Canada. Holarctic Ecology, 10: 278285.Google Scholar
Koponen, S. 1994. Ground-living spiders, opilionids, and pseudoscorpions of peatlands in Québec. In Terrestrial arthropods of peatlands, with particular reference to Canada. Volume 169. Edited by A.T. Finnamore and S.A. Marshall. Memoirs of the Entomological Society of Canada, Ottawa, Ontario, Canada. Pp. 4160.Google Scholar
Kremen, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F., Sanjayan, M.A. 1993. Terrestrial arthropods assemblages: their use in conservation planning. Conservation Biology, 7: 786808.CrossRefGoogle Scholar
Langor, D.W., Pohl, G.R., Hammond, H.E.J. 2006. A coarse-filter approach to conserving arthropod biodiversity in Canadian forests. Arthropods of Canadian Forests Newsletter, 2: 913.Google Scholar
Langor, D.Spence, J.R. 2006. Arthropods as ecological indicators of sustainability in Canadian forests. The Forestry Chronicles, 82: 344350.CrossRefGoogle Scholar
Larochelle, A.Larivière, M.-C. 2003. A natural history of the ground-beetles (Coleoptera: Carabidae) of America north of Mexico. Pensoft, Sofia, Bulgaria.Google Scholar
Lavoie, C., Elias, S.A., Payette, S. 1997. Holocene fossil beetles from a treeline peatland in subarctic Québec. Canadian Journal of Zoology, 75: 227236.CrossRefGoogle Scholar
Lemieux, P.L.Lindgren, B.S. 1999. A pitfall trap for large scale trapping of Carabidae: comparison against conventional design, using two different preservatives. Pedobiologia, 43: 245253.Google Scholar
Lindroth, C.H. 1961. The ground-beetles of Canada and Alaska. Opuscula Entomologica, Supplementum, 20: 1200.Google Scholar
Lindroth, C.H. 1963. The ground-beetles of Canada and Alaska. Opuscula Entomologica, Supplementum, 24: 201408.Google Scholar
Loveï, G., Sunderland, K.D. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41: 231256.CrossRefGoogle ScholarPubMed
Lowrie, D.C. 1973. The microhabitats of western wolf spiders in the genus Pardosa. Entomological News, 84: 103116.Google Scholar
Luff, M.L. 1975. Some features influencing the efficiency of pitfall traps. Oecologia, 19: 345357.CrossRefGoogle ScholarPubMed
Marshall, S.A., Anderson, R.S., Roughley, R.E., Behan-Pelletier, V., Danks, H.V. 1994. Terrestrial arthropods biodiversity: planning a study and recommended sampling techniques. Bulletin of the Entomological Society of Canada, 26: 133.Google Scholar
Marshall, S.A.Finnamore, A.T. 1994. Peatlands arthropods introduction. In Terrestrial arthropods of peatlands, with particular reference to Canada. Volume 169. Edited by A.T. Finnamore and S.A. Marshall. Memoirs of the Entomological Society of Canada, Ottawa, Ontario, Canada. Pp. 35.Google Scholar
Marusik, Y.M., Buckle, D.J., Koponen, S. 2007. A survey of the Holarctic Linyphiidae Araneae), a review of the Erigonine genus Zornella Jackson, 1932. Acta Zootaxonomica Sinica, 32: 2134.Google Scholar
McGeoch, M.A. 1998. The selection, testing and application of terrestrial insects as bioindicator. Biological Reviews of the Cambridge Philosophical Society, 73: 181302.Google Scholar
Miller, R.F.Morgan, A.V. 1991. Late-glacial Coleoptera fauna from Lismore, Nova Scotia. Atlantic Geology, 27: 193197.CrossRefGoogle Scholar
Millidge, A.F. 1984. The erigonine spiders of North America. Part 7. Miscellaneous genera. Journal of Arachnology, 12: 121169.Google Scholar
Morrill, W.L., Lester, D.G., Wrona, A.E. 1990. Factors affecting efficacy of pitfall traps for beetles (Coleoptera: Carabidae and Tenebrionidae). Journal of Entomological Science, 25: 284293.CrossRefGoogle Scholar
Natural Resources Canada. 2006. Canadian Forest Ecosystem Classification (CFEC) [online]. Available from http://cfs.nrcan.gc.ca/pages/356 [accessed 30 April 2013].Google Scholar
Nelson, R.E.Carter, L.D. 1987. Paleoenvironmental analysis of insects and extralimital Populus from an Early Holocene site on the Arctic slope of Alaska, USA. Arctic and Alpine Research, 19: 230241.CrossRefGoogle Scholar
Nichols, J.D.Williams, B.K. 2006. Monitoring for conservation. Trends in Ecology and Evolution, 21: 668673.CrossRefGoogle ScholarPubMed
Nielsen, D., Coenen, V., Beckingham, J.D. 1999. Ecosite and ecosection mapping of the Canfor, Hines Creek Operating Area (P1 south, P2, and P11 Forest Management Units), Ref.# 1999033. Geographic Dynamics Corp., Edmonton, Alberta, Canada.Google Scholar
Niemelä, J. 1993. Mystery of the missing species: species-abundance distribution of boreal ground-beetles. Annales Zoologici Fennici, 30: 169172.Google Scholar
Niemelä, J., Langor, D.W., Spence, J.R. 1993. Effects of clear cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in western Canada. Conservation Biology, 7: 551561.CrossRefGoogle Scholar
Niemelä, J., Spence, J.R., Spence, D.H. 1992. Habitat association and seasonal activity of ground-beetles (Coleoptera: Carabidae) in central Alberta. The Canadian Entomologist, 124: 521540.CrossRefGoogle Scholar
Nordstrom, W.Buckle, D. 2002. Spider records from four wildland parks in northeastern Alberta. Alberta Natural Heritage Information Centre, Parks and Protected Areas Division, Alberta Community Development [online]. Available from http://tpr.alberta.ca/parks/heritageinfocentre/docs/Four_Wildland_Parks_Spider.pdf [accessed 30 April 013].CrossRefGoogle Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Lanegendre, P., O'Hara, P.R., et al. 2012. Vegan: community ecology package. R package version 2.0-3 [online]. Available from http://CRAN.R-project.org/package=vegan [accessed 29 March 2013].Google Scholar
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., et al. 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience, 51: 933938.CrossRefGoogle Scholar
Paquin, P. 2008. Carabid beetle (Coleoptera: Carabidae) diversity in the black spruce succession of Eastern Canada. Biological Conservation, 141: 261275.CrossRefGoogle Scholar
Pearce, J.L.Venier, L.A. 2006. The use of ground beetles (Coleoptera Carabidae) and spiders (Aranea) as bioindicators of sustainable forest management: a review. Ecological Indicators, 6: 780793.CrossRefGoogle Scholar
Pearce, J.L., Venier, L.A., Eccles, G., Pedlar, J., McKenny, D. 2004. Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodiversity and Conservation, 13: 13051334.CrossRefGoogle Scholar
Pearce, J.L., Venier, L.A., McKee, J., Pedlar, J., McKenny, D. 2003. Influence of habitat and microhabitat on carabid (Coleoptera: Carabidae) assemblages in four stand types. The Canadian Entomologist, 135: 337357.CrossRefGoogle Scholar
Phillips, I.D.Cobb, T.P. 2005. Effects of habitat structure and lid transparency on pitfall catches. Environmental Entomology, 34: 875882.CrossRefGoogle Scholar
Pinzon, J., Spence, J.R., Langor, D.W. 2011. Spider assemblages in the overstory, understory, and ground layers of managed stands in the Western Boreal Mixedwood Forest of Canada. Environmental Entomology, 40: 797808.CrossRefGoogle ScholarPubMed
Pinzon, J., Spence, J.R., Langor, D.W. 2012. Responses of ground-dwelling spiders (Araneae) to variable retention harvesting practices in the boreal forest. Forest Ecology and Management, 266: 4252.CrossRefGoogle Scholar
Platnick, N.I.Dondale, C.D. 1992. The ground spiders of Canada and Alaska (Araneae: Gnaphosidae). The Insects and Arachnids of Canada, 19: 1297.Google Scholar
Pohl, G.R., Langor, D.W., Spence, J.R. 2007. Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biological Conservation, 137: 294307.CrossRefGoogle Scholar
Polyakova, O.Billor, N. 2007. Impact of deciduous tree species on litter fall quality, decomposition rate and nutrient circulation in pine stands. Forest Ecology and Management, 253: 1118.CrossRefGoogle Scholar
Pyatt, D.G., Ray, D., Fletcher, J. 2001. An ecological site classification for forestry in Great Britain. Bulletin 124, Forestry Commission, Edinburgh, United Kingdom.Google Scholar
R Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from www.R-project.org [accessed 30 March 2013].Google Scholar
Roberts, D.W. 2012. Labdsv: ordination and multivariate analysis for ecology. R package version 1.5-0 [online]. Available from http://CRAN.R-project.org/package=labdsv [accessed 29 March 2013].Google Scholar
Rodwell, J.S., Schaminee, J.H.J., Mucina, L., Pignatti, S., Dring, J., Moss, D. 2002. The diversity of European vegetation. An overview of phytosociological alliances and their relationships to EUNIS habitats. Report EC-LNV 2002/054. National Reference Centre for Agriculture, Nature and Fisheries, Wageningen, The Netherlands.Google Scholar
Rowe, J.S. 1972. Forest regions of Canada. Publication 1300. Department of the Environment, Canadian Forestry Service, Ottawa, Ontario, Canada.Google Scholar
Short, S.K.Elias, S.A. 1987. New pollen and beetle analyses at the Mary Jane site, Colorado: evidence for late glacial tundra conditions. Geological Society of America Bulletin, 98: 540548.2.0.CO;2>CrossRefGoogle Scholar
Simberloff, D. 1979. Rarefaction as a distribution-free method of expressing and estimating diversity. In Ecological diversity in theory and practice. Edited by J.F. Grassle, G.P. Patil, W.K. Smith and C. Taillie. International Cooperative Publishing, Burstonville, Maryland, United States of America. Pp. 159176.Google Scholar
Spence, J.R., Langor, D.W., Jacobs, J.M., Work, T.T., Volney, W.J. 2008. Conservation of forest-dwelling arthropod species: simultaneous management of many small and heterogeneous risks. The Canadian Entomologist, 140: 510525.CrossRefGoogle Scholar
Spence, J.R.Niemelä, J.K. 1994. Sampling carabid assemblages with pitfall traps: the madness and the method. The Canadian Entomologist, 126: 881894.CrossRefGoogle Scholar
Spence, J.R., Volney, W.J.A., Lieffers, V.J., Weber, M.G., Luchkow, S.A., Vinge, T.W. 1999. The Alberta EMEND project: recipe and cook's argument. In Proceedings of the 1999 sustainable forest management network conference, science and practice: sustaining the boreal forest, 14-17 February, 1999. Edmonton, AB. Edited by T.S. Veeman, D.W. Smith, B.G. Purdy, F.J. Salkie and G.A. Larkin. Sustainable Forest Management Network, Edmonton, Alberta, Canada. Pp. 583590.Google Scholar
Spitzer, K.Danks, H.V. 2006. Insect biodiversity in boreal peat bogs. Annual Review of Entomology, 51: 137161.CrossRefGoogle ScholarPubMed
Taylor, R.J.Doran, N. 2001. Use of terrestrial invertebrates as indicators of the ecological sustainability of forest management under the Montreal Process. Journal of Insect Conservation, 5: 221231.CrossRefGoogle Scholar
Thiele, H.U. 1977. Carabid beetles in their environments. Springer Verlag, Berlin, Germany.CrossRefGoogle Scholar
Topping, C.J. 1993. Behavioural responses of three linyphiid spiders to pitfall traps. Entomologia Experimentalis et Applicata, 68: 287293.CrossRefGoogle Scholar
Topping, C.J.Sunderland, K.D. 1992. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. Journal of Applied Ecology, 29: 485491.CrossRefGoogle Scholar
Uetz, G.W. 1976. Gradient analysis of spider communities in a streamside forest. Oecologia, 22: 373385.CrossRefGoogle Scholar
Uetz, G.W.Unzicker, J.D. 1976. Pitfall trapping in ecological studies of wandering spiders. Journal of Arachnology, 3: 101111.Google Scholar
Vitt, D.H. 1994. An overview of factors that influence the development of Canadian peatlands. In Terrestrial arthropods of peatlands, with particular reference to Canada. Volume 169. Edited by A.T. Finnamore and S.A. Marshall. Memoirs of the Entomological Society of Canada, Ottawa, Ontario, Canada. Pp. 720.Google Scholar
Waage, B.E. 1985. Trapping efficiency of carabid beetles in glass and plastic pitfall traps containing different solutions. Fauna Norvegica, Series B, 32: 3336.Google Scholar
Work, T.T., Buddle, C.M., Korinus, L.M., Spence, J.R. 2002. Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for biodiversity studies. Environmental Entomology, 31: 438448.CrossRefGoogle Scholar
Work, T.T., Koivula, M., Klimaszewski, J., Langor, D.W., Spence, J.R., Sweeney, J., et al. 2008. Evaluation of carabid beetles as indicators of forest change in Canada. The Canadian Entomologist, 140: 393414.CrossRefGoogle Scholar
Work, T.T., Shorthouse, D.P., Spence, J.R., Volney, W.J., Langor, D.W. 2004. Stand composition and structure of the boreal mixedwood and epigaeic arthropods of the Ecosystem Management Emulating Natural Disturbance (EMEND) landbase in northwestern Alberta. The Canadian Journal of Forest Research, 34: 417430.CrossRefGoogle Scholar
Supplementary material: File

Bergeron Supplementary Material

Appendix

Download Bergeron Supplementary Material(File)
File 43.1 KB