Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:11:28.025Z Has data issue: false hasContentIssue false

Dispersal of adult Colorado potato beetles (Coleoptera: Chrysomelidae) on plant models

Published online by Cambridge University Press:  20 November 2012

Gilles Boiteau*
Affiliation:
Agriculture and Agri-Food Canada, Potato Research Center, 850 Lincoln Road, PO Box 20280, Fredericton, New Brunswick, Canada E3B 4Z7
Pamela MacKinley
Affiliation:
Agriculture and Agri-Food Canada, Potato Research Center, 850 Lincoln Road, PO Box 20280, Fredericton, New Brunswick, Canada E3B 4Z7
*
1Corresponding author (e-mail: gilles.boiteau@agr.gc.ca).

Abstract

Five artificial plant models mimicking potato plants, each having different and increasing numbers of structural components, were used to observe individual adult Colorado potato beetles (Leptinotarsa decemlineata (Say); Coleoptera: Chrysomelidae) over a period of 6 hours. The objective was to determine if plant architecture affected residency time, within plant dispersal, and distribution of the species. The number of transitions between sections, the time spent on each section, the residency time on each model, and the proportion of individuals walking off were recorded. Results showed a positive relationship between the proportion of beetles remaining after 6 hours and the number of connections on respective models. The unexpectedly long residency on all but the simplest model in spite of the absence of food indicates that architectural complexity had an impact on beetle retention. Dispersal activity and residency time were heavily skewed towards the top of models. Beetles exposed to positive light gradients of different intensities and a negative light gradient showed that a phototactic response could explain much of the dispersal pattern to the upper model sections. Results show that manipulation of plant structure remains an option for managing the beetle but will require further research on the contribution of heterogeneity and scale to residency time.

Résumé

Cinq modèles de plantes artificielles imitant les plantes de pomme de terre, chacun ayant des nombres différents et croissant de composantes structurelles, ont été utilisés pour observer les adultes du doryphore de la pomme de terre (Leptinotarsa decemlineata (Say); Coleoptera: Chrysomelidae) sur des périodes de 6 heures. L'objectif était de déterminer si l'architecture des plantes affectait le temps de résidence, la dispersion au sein des plantes, et la distribution de l'espèce. Le nombre de transitions entre les sections, le temps passé sur chaque section, le temps de séjour sur chaque modèle et la proportion des insectes abandonnant le modèle ont été enregistrés. Les résultats ont montré une relation positive entre la proportion de doryphores qui restaient après 6 heures et le nombre de connexions sur chacun des modèles. La longue durée inattendue du temps de résidence sur la plupart des modèles en dépit de l'absence de nourriture indique que la complexité architecturale a eu un impact sur la rétention du doryphore. L'activité de dispersion et le temps de séjour étaient fortement biaisés vers le haut des modèles. L'exposition de doryphores à des gradients de lumière positifs de différentes intensités et un gradient de lumière négatif démontra que la réponse phototactique est probablement responsable de leur dispersion vers les sections supérieures du modèle. Les résultats montrent que la manipulation de la structure des plantes demeure une option pour la gestion du doryphore mais qu'il faudra d'abord poursuivre les recherches sur la contribution de l'hétérogénéité et de la taille sur le temps de séjour.

Type
Behaviour & Ecology
Copyright
Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, M.B., Ferro, D.N., Porter, A.H. 2001. Invasions on large and small scales: management of a well-established crop pest, the Colorado potato beetle. Biological Invasions, 3: 295306.CrossRefGoogle Scholar
Bell, A.D., Roberts, D., Smith, A. 1979. Branching patterns: the simulation of plant architecture. Journal of Theoretical Biology, 1: 351375.CrossRefGoogle Scholar
Boiteau, G. 2005. Visual orientation of nondiapausing and prediapausing adult Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) in free flight. Environmental Entomology, 34: 11501160.CrossRefGoogle Scholar
Boiteau, G., Alyokhin, A., Ferro, D.N. 2003. The Colorado potato beetle in movement. The Canadian Entomologist, 135: 122.CrossRefGoogle Scholar
Boiteau, G., Pelletier, Y., Misener, G.C., Bernard, G. 1994. Development and evaluation of a plastic trench barrier for protection of potato from walking adult Colorado potato beetles (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 87: 13251331.CrossRefGoogle Scholar
Bond, A.B. 1983. The foraging behaviour of lacewing larvae on vertical rods. Animal Behaviour, 31: 9901004.CrossRefGoogle Scholar
Carter, M.C., Sutherland, D., Dixon, A.F.G. 1984. Plant structure and the searching efficiency of coccinellid larvae. Oecologia, 63: 394397.CrossRefGoogle ScholarPubMed
Frazer, B.D.McGregor, R.R. 1994. Searching behaviour of adult female Coccinellidae (Coleoptera) on stem and leaf models. The Canadian Entomologist, 126: 389399.CrossRefGoogle Scholar
Gingras, D., Dutilleul, P., Boivin, G. 2002. Modeling the impact of plant structure on host-finding behavior of parasitoids. Oecologia, 130: 396402.CrossRefGoogle ScholarPubMed
Grevstad, F.S.Klepetka, B.W. 1992. The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia, 92: 399404.CrossRefGoogle ScholarPubMed
Grison, P. 1957. Les facteurs du comportement chez l'imago du doryphore (Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Bulletin biologique de la France et de la Belgique, 43 (Suppl.), 1154.Google Scholar
Grison, P.Ritter, R. 1953. Réactions géotactiques et phénomènes sensoriels chez le doryphore, Leptinotarsa decemlineata Say. Compte Rendu de la Societe de Biologique, 147: 626627.Google Scholar
Hannunen, S. 2002. Vegetation architecture and redistribution of insects moving on the plant surface. Ecological Modelling, 155: 149157.CrossRefGoogle Scholar
Hannunen, S. 2005. Modelling the interplay between pest movement and the physical design of trap crop systems. Agricultural and Forest Entomology, 7: 1120.CrossRefGoogle Scholar
Hannunen, S.Ekbom, B. 2001. Host plant influence on movement patterns and subsequent distribution of the polyphagous herbivore Lygus rugulipennis (Heteroptera: Miridae). Environmental Entomology, 30: 517523.CrossRefGoogle Scholar
Hannunen, S.Ekbom, B. 2002. Within species variation in host plant quality and movement behavior of Lygus rugulipennis nymphs. Entomologia Experimentalis et Applicata, 104: 95101.CrossRefGoogle Scholar
Jander, R. 1963. Insect orientation. Annual Review of Entomology, 8: 95114.CrossRefGoogle Scholar
Kareiva, P.Sahakian, R. 1990. Tritrophic effects of a simple architectural mutation in pea plants. Nature, 345: 433434.CrossRefGoogle Scholar
Lauri, P.E., Crété, X., Ferré, G. 2007. Centrifugal training in apple – appraisal of a 2 year experiment on cv. ‘Galaxy’ in southeast France. Acta Horticulturae, 732: 391396.CrossRefGoogle Scholar
Mbungu, N.T.Boiteau, G. 2008. Flight take-off performance of Colorado potato beetle in relation to potato phenology. Journal of Economic Entomology, 101: 5660.CrossRefGoogle ScholarPubMed
Otálora-Luna, F.Dickens, J.C. 2011. Spectral preference and temporal modulation of photic orientation by Colorado potato beetle on a servosphere. Entomologia Experimentalis et Applicata, 138: 93103.CrossRefGoogle Scholar
Pelletier, Y.Caissie, R. 2001. Behavioural and physical reactions of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) walking on a slanted surface. Biological Cybernetics, 84: 269277.CrossRefGoogle ScholarPubMed
Pelletier, Y.Smilowitz, Z. 1987. Specialized tarsal hairs on adult male Colorado potato beetles, Leptinotarsa decemlineata (Say), hamper its locomotion on smooth surfaces. The Canadian Entomologist, 119: 11391142.CrossRefGoogle Scholar
Simon, S., Lauri, P.E., Brun, L., Defrance, H., Sauphanor, B. 2006. Does manipulation of fruit-tree architecture affect the development of pests and pathogens? A case study in an organic apple orchard. Journal of Horticultural Science and Biotechnology, 81: 765773.CrossRefGoogle Scholar
Simon, S., Morel, K., Durand, E., Brevalle, G., Girard, T., Lauri, P.E. 2012. Aphids at crossroads: when branch architecture alters aphid infestation patterns in the apple tree. Trees Structure and Function, 26: 273282.CrossRefGoogle Scholar
Simon, S., Sauphanor, B., Lauri, P.E. 2007. Control of fruit tree pests through manipulation of tree architecture. Pest Technology, 1: 3337.Google Scholar
Unruh, T.R.Chauvin, R.L. 1993. Elytral punctures: a rapid, reliable method for marking Colorado potato beetle. The Canadian Entomologist, 125: 5563.CrossRefGoogle Scholar
Weber, D.C.Ferro, D.N. 1994. Colorado potato beetle: diverse life history poses challenge to management. In Advances in potato pest biology and management. Edited by G. W. Zehnder, M. L. Powelson, R. K. Jansson, and K. V. Raman. American Phytopathological Society, St. Paul, Minnesota, United States of America. pp. 5465.Google Scholar