Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:37:06.263Z Has data issue: false hasContentIssue false

BODY SIZE VARIATION AND OPTIMAL BODY SIZE OF BUMBLE BEE QUEENS (HYMENOPTERA: APIDAE)

Published online by Cambridge University Press:  31 May 2012

Robin E. Owen
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Abstract

Body size and mass variation of queen bumble bees (Bombus Latr. spp.) were analyzed in relationship to hibernation survival and optimal body size. Body mass and size (measured by radial cell length) were significantly correlated in six of eight species. Also, spring queens of B. occidentalis Greene were, on average, significantly larger yet lighter than young fall queens. These observations were consistent with weight loss known to occur during hibernation coupled with greater mortality of small queens over the winter. Thus large queens may be at an advantage for this and other reasons (e.g. foraging efficiency, usurpation). However, an optimality model showed that an intermediate body size was optimal if the reproductive success of a colony (foundress queen and workers) was considered. The assumptions were that fitness did not increase linearly with body size but was a convex function, and that colonies only had a fixed amount of energy to invest in reproductive offspring leading to a trade-off between size and number.

Résumé

On a analysé la variation de la taille corporelle et de la masse de reines de bourdons (Bombus Latr. spp.) en rapport avec la survie en hibernation et la taille corporelle optimale. La masse et la taille corporelles (mesurées par la longueur radiale des cellules) étaient significativement corrélées chez six des espèces. De plus, chez B. occidentalis Greene, les reines printannières étaient en moyenne plus grandes quoique plus légères que les jeunes reines automonales. Ces observations sont en accord avec la perte de poids déjà confirmée durant l’hibernation, couplée avec la mortalité plus élevée des petites reines au cours de l’hiver. Ainsi les grosses reines seraient avantagées pour cette raison parmi d’autres (par ex. efficacité comme butineuses, succès d’usurpation). Cependant un modèle d’optimalité a montré qu’une taille corporelle intermédiaire est celle qui est optimale si le succès reproducteur d’une colonie (reine fondatrice et ouvrières) sont considérées. Les prémisses étaient que la fitness n’augmente pas linéairement avec la taille corporelle, la relation ayant une forme convexe, et que les colonies n’ont qu’une quantité limitée d’énergie à investir dans la production de reproducteurs, créant un équilibre entre la taille et le nombre.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. McN. 1982. Optima for animals. Edward Arnold, London.Google Scholar
Alford, D.V. 1969. The study of hibernation of bumble bees (Hymenoptera: Bombidae) in Southern England. J. Anim. Ecol. 38: 149170.CrossRefGoogle Scholar
Cumber, R.A. 1949. The biology of bumble-bees with special reference to the production of the worker caste. Trans. R. ent. Soc. Lond. 100: 145.CrossRefGoogle Scholar
Falconer, D.S. 1981. Introduction to quantitative genetics, 2nd ed. Longman, London.Google Scholar
Harder, L.D. 1983. Flower handling efficiency of bumble bees: morphological aspects of probing time. Oecologia (Berlin) 57: 274280.CrossRefGoogle ScholarPubMed
Harder, L.D. 1985. Morphology as a predictor of flower choice by bumble bees. Ecology 66: 198210.CrossRefGoogle Scholar
Harder, L.D. 1986. Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia (Berlin) 69: 309315.CrossRefGoogle ScholarPubMed
Heinrich, B., and Heinrich, M.J.E.. 1983. Size and caste in temperature regulation by bumble bees. Physiol. Zool. 56: 552562.CrossRefGoogle Scholar
Hobbs, G.A. 1965. Ecology of species of Bombus Latr. (Hymenoptera: Apidae) in Southern Alberta. II. Subgenus Bombias Robt. Can. Ent. 97: 120128.CrossRefGoogle Scholar
Holm, S.N. 1972. Weight and life length of hibernating bumble bee queens (Hymenoptera: Bombidae) under controlled conditions. Ent. Scand. 3: 313320.CrossRefGoogle Scholar
Klein, E.W., Defries, J.C., and Finkbeiner, C.T.. 1973. Heritability and genetic correlation: standard errors of estimates and sample size. Behav. Genet. 3: 355364.CrossRefGoogle ScholarPubMed
Knee, W.J., and Medler, J.T.. 1965. The seasonal size increase in bumble bee workers (Hymenoptera: Bombus). Can. Ent. 97: 11491155.CrossRefGoogle Scholar
Macnair, M.R. 1978. An ESS for the sex ratio in animals, with particular reference to the social Hymenoptera. J. Theor. Biol. 70: 449459.CrossRefGoogle Scholar
Medler, J.T. 1962. Morphometric studies on bumble bees. Ann. ent. Soc. Am. 55: 212218.CrossRefGoogle Scholar
Oldroyd, B., and Moran, C.. 1983. Heritability of worker characters in the honey bee (Apis mellifera). Aust. J. Biol. Sci. 36: 323332.CrossRefGoogle Scholar
Oster, G.F., and Wilson, E.O.. 1978. Caste and ecology in the social insects. Princeton University Press, Princeton.Google ScholarPubMed
Owen, R.E. 1986. Colony-level selection in the social insects: single locus additive and nonadditive models. Theor. Pop. Biol. 29: 198234.CrossRefGoogle Scholar
Owen, R.E., Rodd, F.M., and Plowright, R.C.. 1980. Sex ratios in bumble bee colonies: complications due to orphaning? Behav. Ecol. Sociobiol. 7: 287291.CrossRefGoogle Scholar
Pekkarinen, A. 1979. Morphometric, color and enzyme variation in bumble bees (Hymenoptera, Apidae, Bombus) in Fennoscandia and Denmark. Acta Zool. Fenn. 158: 160.Google Scholar
Pendrel, B.A., and Plowright, R.C.. 1981. Larval feeding by adult bumble bee workers (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 8: 7176.CrossRefGoogle Scholar
Plowright, R.C., and Jay, S.C.. 1966. Rearing bumble bee colonies in captivity. J. Apic. Res. 5: 155165.CrossRefGoogle Scholar
Plowright, R.C., and Jay, S.C.. 1968. Caste differentiation in bumble bees (Bombus Latr.:Hym.) I — The determination of female size. Insectes Sociaux 15: 171192.CrossRefGoogle Scholar
Plowright, R.C., and Jay, S.C.. 1977. On the size determination of bumble bee castes (Hymenoptera: Apidae). Can. J. Zool. 55: 11331138.CrossRefGoogle Scholar
Plowright, R.C., and Laverty, T.M.. 1984. The ecology and sociobiology of bumble bees. Annu. Rev. Ent. 28: 175199.CrossRefGoogle Scholar
Plowright, R.C., and Stephen, W.P.. 1973. A numerical taxonomic analysis of the evolutionary relationships of Bombus and Psithyrus (Apidae: Hymenoptera). Can. Ent. 105: 733743.CrossRefGoogle Scholar
Pomeroy, N., and Plowright, R.C.. 1980. Maintenance of bumble bee colonies in observation hives (Hymenoptera: Apidae). Can. Ent. 112: 321326.CrossRefGoogle Scholar
Pyke, G.H. 1978. Optimal body size in bumble bees. Oecologia (Berlin) 34: 255266.CrossRefGoogle Scholar
Richards, K.W. 1978. Nest site selection by bumble bees (Hymenoptera: Apidae) in Southern Alberta. Can. Ent. 110: 301318.CrossRefGoogle Scholar
Ryan, T.A., Joiner, B.L., and Ryan, B.F.. 1976. Minitab Student Handbook. Duxbury Press, Boston.Google Scholar
Smith, C.C., and Fretwell, S.D.. 1974. The optimal balance between size and number of offspring. Am. Natur. 108: 499506.CrossRefGoogle Scholar
Snedecor, G.W., and Cochran, W.G.. Statistical methods. Iowa State University Press, Iowa.Google Scholar
Szabo, T.I., and Pengelly, D.H.. 1973. The over-wintering and emergence of Bombus (Pyrobombus) impatiens (Cresson) (Hymenoptera: Apidae) in Southern Ontario. Insectes Sociaux 20: 125132.CrossRefGoogle Scholar