Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T03:02:51.642Z Has data issue: false hasContentIssue false

ADVERSE EFFECT OF FENOXYCARB ON REPRODUCTION BY THE CALIFORNIA FIVESPINED IPS, IPS PARACONFUSUS LANIER (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

N.-M. Chen
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Bumaby, British Columbia, Canada V5A 1S6
J.H. Borden
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Bumaby, British Columbia, Canada V5A 1S6

Abstract

The effects of fenoxycarb, ethyl[2-(p-phenoxyphenoxy)-ethyl]carbamate, an insect growth regulator with juvenile hormone activity, on reproduction in Ips paraconfusus Lanier were investigated. Topical treatment of either females or both sexes of parent beetles with 50 μg of fenoxycarb per insect resulted in a significant reduction in hatching of eggs and numbers of progeny produced by beetles allowed to infest logs of ponderosa pine, Pinus ponderosa Laws. When pairs of beetles were allowed to attack logs that were surface-treated with fenoxycarb, the effects on reproduction at a dose of 100 μg/cm2 of bark surface were comparable to those of a topical treatment at a dose of 50 μg per insect. However, at doses of 1000 or 10 000 μg/cm2 the adverse effects included reductions in the length of egg galleries, fecundity (number of egg niches), and number of freshly laid eggs. Percentage reductions in progeny were 35.8, 82.5, and 95.7 for doses of 100, 1000, and 10 000 μg/cm2, respectively, if brood beetles were allowed to emerge from the logs. This study indicates that fenoxycarb acts as an effective chemosterilant on I. paraconfusus.

Résumé

On a étudié les effets du fenoxycarb, éthyl[2-(p-phénoxyphénoxy)éthyl]carbamate, un régulateur de croissance à action juvéno-hormonale, sur la reproduction d’Ips paraconfusus Lanier. L’application topicale du produit à des femelles ou des parents des deux sexes à la dose 50 μg par insecte a réduit significativement l’éclosion des oeufs et le nombre de progénitures des scolytes qu’on a laissés infester librement des bûches de pin ponderosa, Pinus ponderosa Laws. Lorsque des paires de scolytes pouvaient attaquer librement des bûches traitées en surface avec du fenoxycarbe, les effets sur la reproduction à la dose de 100 μg/cm2 de surface d’écorce étaient comparables à ceux de l’application topicale de 50 μg par insecte. Cependant, aux doses de 1000 et 10 000 μg/cm2, on a noté une réduction de la longueur des galeries, de la fécondité (nombre de nids d’oeufs) et de nombre d’oeufs frais pondus, parmi les effets néfastes du traitement. Le pourcentage de baisse de la reproduction était de 35,8, 82,5, et 95,7, aux doses de 100, 1000 et 10 000 μg/cm2, lorsqu’on suivait les nichées jusqu’à l’émergence des bûches. L’étude indique que le fenoxycarbe est un chimiostérilisant efficace contre L. paraconfusus.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1983. Ro 13-5223. Technical Data Sheet. Dr. R. Maag Ltd., CH-8157. Maag Technical Bulletin, Dielsdorf, Switzerland.Google Scholar
Brown, M.B. (Ed.). 1977. BMDP-77. Biomedical Computer Programs. P-series. Univ. Calif. Press, Berkeley, California.Google Scholar
Chen, N.-M., Borden, J.H., and Pierce, H.D. Jr., 1988. Effect of juvenile hormone analog, fenoxycarb, on pheromone production by Ips paraconfusus (Coleoptera: Scolytidae). J. Chem. Ecol. 14: 10871098.CrossRefGoogle ScholarPubMed
Critchley, B.R., and Almeida, A.A.. 1973. Side effects of solvents, especially acetone, used for the application of juvenile hormone mimics and chemosterilants. Bull. Ent. Res. 63: 16.CrossRefGoogle Scholar
Dorn, S., Frischkencht, M.L., Martinez, V., Zurflüh, R., and Fischer, U.. 1981. A novel non-neurotoxic insecticide with a broad activity spectrum. Z. Pflanzenkr. Pflanzenschutz 88: 269275.Google Scholar
Edwards, J.P., and Short, J.E.. 1984. Evaluation of three compounds with insect juvenile hormone activity as grain protectants against insecticide-susceptible and resistant strains of Sitophilus species (Coleoptera: Curculionidae). J. Stored Prod. Res. 20: 1115.CrossRefGoogle Scholar
Ibaraki, A., and Sahota, T.S.. 1976. Effect of insect growth regulators on survival of Douglas-fir beetle progeny. Can. For. Serv. Bi-Monthly Res. Notes 32: 3, 5.Google Scholar
Karrer, F., and Farooq, S.. 1981. Some insect growth regulators with aromatic rings: their synthesis and biological properties. Part I, pp. 289302in Sehnal, F., Zabzá, A., Menn, J.J., and Cymborowski, B. (Eds.), Regulation of Insect Development and Behaviour. Wroclaw Tech. Univ. Press, Wroclaw, Poland.Google Scholar
Kramer, K.J., Beeman, R.W., and Hendricks, L.H.. 1981. Activity of Ro 13-5223 and Ro 13-7744 against stored product insects. J. econ. Ent. 74: 678680.CrossRefGoogle Scholar
Miller, D.R., and Borden, J.H.. 1985. Life history and biology of Ips latidens (LeConte) (Coleoptera: Scolytidae). Can. Ent. 117: 859871.CrossRefGoogle Scholar
McMullen, L.H., and Sahota, T.S.. 1974. Effect of a juvenile hormone analogue on developmental rate and growth rate of progeny in Pissodes strobi (Coleoptera: Curculionidae). Can. Ent. 106: 10151018.CrossRefGoogle Scholar
Neter, J., and Wasserman, W.. 1974. Applied Linear Statistical Models. Richard D. Irwin, Inc., Homewood, Illinois.Google Scholar
Novák, V., Sehnal, F., Romanuk, M., and Streinz, L.. 1976. Responses and sensitivity of Ips typographus L. (Col., Scolytidae) and Hylobius abietis L. (Col., Curculionidae) to juvenoids. Z. angew. Ent. 80: 118131.CrossRefGoogle Scholar
Rohdendorf, E.B., and Sehnal, F.. 1973. Inhibition of reproduction and embryogenesis in the firebrat, Thermobia domestica, by juvenile hormone analogues. J. Insect Physiol. 19: 3756.CrossRefGoogle Scholar
Schmitz, R.F. 1972. Behavior of Ips pini during mating, oviposition, and larval development (Coleoptera: Scolytidae). Can. Ent. 104: 17231728.CrossRefGoogle Scholar
Sehnal, F. 1976. Action of juvenoids on different groups of insects. pp. 301322in Gilbert, L.I. (Ed.), The Juvenile Hormones. Plenum, New York.CrossRefGoogle Scholar
Staal, G.B. 1975. Insect growth regulators with juvenile hormone activity. A. Rev. Ent. 20: 417460.CrossRefGoogle ScholarPubMed
Staal, G.B. 1977. Insect control with insect growth regulators based on insect hormones. Ponlif. Accad. Sci. Varia 41: 353377.Google Scholar
Van Sambeek, J.W., and Bridges, J.R.. 1980. Influence of the juvenile hormone analogue, methoprene, on development of the southern pine beetle, Dendroctonus frontalis Zimm. (Col., Scolytidae). Z. angew. Ent. 80: 479488.CrossRefGoogle Scholar
Van Sambeek, J.W., and Bridges, J.R.. 1981. Influence of the juvenile hormone analogue methoprene on reproduction of the southern pine beetle, Dendroctonus frontalis Zimm. J. Georgia ent. Soc. 16: 7783.Google Scholar
Wood, D.L. 1961. Stridulation in the genus Ips De Geer. Pan-Pacif. Ent. 37: 187188.Google Scholar
Wood, D.L., and Stark, R.W.. 1966. The effects of gamma radiation on the biology and behavior of adult Ips confusus (LeConte) (Coleoptera: Scolytidae). Can. Ent. 98: 110.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar