Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T14:48:36.185Z Has data issue: false hasContentIssue false

Slow or stepped rewarming after acute low-temperature exposure does not improve survival of Drosophila melanogaster larvae

Published online by Cambridge University Press:  02 April 2012

Brent J. Sinclair*
Affiliation:
Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
Arun Rajamohan
Affiliation:
Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
*
1Corresponding author (e-mail: bsincla7@uwo.ca).

Abstract

We tested the hypothesis that slow rewarming would improve the ability of Drosophila melanogaster Meigen (Diptera: Drosophilidae) larvae to survive acute low-temperature exposure. Four larval stages (1st, 2nd, and 3rd instars, including wandering-stage 3rd instars) of four wild-type strains were exposed to –7 °C for periods of time expected to result in 90% mortality. Larvae were then directly transferred to their rearing temperature (21 °C) or returned to this temperature either in a stepwise fashion (pausing at 0 and 15 °C) or by slow warming at 1 or 0.1 °C/min. We observed a reduced rapid cold-hardening effect and no general increase in survival of acute chilling in larvae rewarmed in a stepwise or slow fashion, and we hypothesize that slow rewarming may result in accumulation of chill injuries.

Résumé

Nous avons vérifié l’hypothèse qu’un réchauffement lent améliorerait les taux de survie chez les larves de Drosophila melanogaster Meigen (Diptera: Drosophilidae) après leur exposition à une période aiguë de froid. Les larves de quatre stades (1er, 2e, et 3e, incluant les larves errantes du stade 3) et de quatre souches de type sauvage furent exposées à une température de –7 °C pendant une période pour laquelle il était estimé qu’un taux de mortalité d’environ 90 % serait atteint. Les larves furent ensuite soit directement transférées à un régime de 21 °C, soit retournées à cette température par étapes (avec pauses à 0 et 15 °C) ou par réchauffement graduel d’un taux de 1 ou 0,1 °C/min. Nous avons observé une baisse de l’acclimatation rapide au froid ainsi que l’absence d’une augmentation de la survie des larves réchauffées soit graduellement ou par étapes. Ainsi, il est proposé qu’un réchauffement lent et par étapes résultera en l’accumulation de blessures associées au refroidissement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashburner, M., Golic, K.G., and Hawley, R.S. 2005. Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
Baust, J.G., and Rojas, R.R. 1985. Insect cold hardiness: facts and fancy. Journal of Insect Physiology, 31: 755759.CrossRefGoogle Scholar
Czajka, M.C., and Lee, R.E. Jr., 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. Journal of Experimental Biology, 148: 245254.CrossRefGoogle ScholarPubMed
Fujiwara, Y., and Denlinger, D.L. 2007. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Journal of Experimental Biology, 219: 32953300.Google Scholar
Hoffmann, A.A., Sorensen, J.G., and Loeschcke, V. 2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 28: 175216.CrossRefGoogle Scholar
Kelty, J.D., and Lee, R.E. Jr., 1999. Induction of rapid cold hardening by ecologically relevant cooling rates in Drosophila melanogaster. Journal of Insect Physiology, 45: 719726.Google Scholar
Lee, R.E. Jr., 1991. Principles of insect low temperature tolerance. In Insects at low temperature. Edited by Lee, R.E. Jr., and Denlinger, D.L.. Chapman and Hall, New York. pp. 1746.Google Scholar
Magnusson, J., and Ramel, C. 1986. Genetic vatiation in the susceptibility to mercury and other metal compounds in Drosophila melanogaster. Teratogenesis, Carcinogenesis and Mutagenesis, 6: 289305.Google Scholar
Mazur, P., Cole, K.W., Schreuders, P.D., and Mahowald, A.P. 1993. Contributions of cooling and warming rate and developmental stage to the survival of Drosophila embryos cooled to –205 degrees C. Cryobiology, 30: 4573.Google Scholar
Miller, L.K. 1978. Freezing tolerance in relation to cooling rate in an adult insect. Cryobiology, 15: 345349.CrossRefGoogle Scholar
Nedved, O. 1998. Modelling the relationship between cold injury and accumulated degree days in terrestrial arthropods. Cryo-Letters, 19: 267274.Google Scholar
Overgaard, J., Sorensen, J.G., Petersen, S.O., Loeschcke, V., and Holmstrup, M. 2005. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology, 51: 11731182.Google Scholar
Overgaard, J., Malmendal, A., Sorensen, J., Bundy, J.G., Loeschcke, V., Nielsen, N.C., and Holmstrup, M. 2007. Metabolomic profiling of rapid cold hardening and heat shock in Drosophila melanogaster. Journal of Insect Physiology. 53: 12181232.Google Scholar
Powell, S.J., and Bale, J.S. 2006. Effect of long-term and rapid cold hardening on the cold torpor temperature of an aphid. Physiological Entomology, 31: 348352.CrossRefGoogle Scholar
Quinn, G.P., and Keogh, M.J. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Rajamohan, A., and Sinclair, B.J. 2008. Short term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. Journal of Insect Physiology. 54: 708718.Google Scholar
Rall, W.F., and Polge, C. 1984. Effect of warming rate on mouse embryos frozen and thawed in glycerol. Journal of Reproduction and Fertility, 70: 285292.Google Scholar
Sinclair, B.J. 2001. Field ecology of freeze tolerance: interannual variation in cooling rates, freeze–thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos, 93: 286293.Google Scholar
Sinclair, B.J., Gibbs, A.G., and Roberts, S.P. 2007 a. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Molecular Biology, 16: 435443.Google Scholar
Sinclair, B.J., Nelson, S., Nilson, T.L., Roberts, S.P., Gibbs, A.G. 2007 b. The effect of selection for dessication resistance on cold tolerance of Drosophila melanogaster. Physiological Entomology, 32: 322327.Google Scholar
Vogel, E. 1980. Genetical relationship between resistance to insecticides and procarcinogens in two Drosophila populations. Archives of Toxicology, 43: 201211.CrossRefGoogle ScholarPubMed
Yi, S.X., Moore, C.W., and Lee, R.E. 2007. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis, 12: 11831193.Google Scholar