Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-03T12:46:12.196Z Has data issue: false hasContentIssue false

RESISTANCE TO INSECTICIDES IN ORIENTAL FRUIT MOTH POPULATIONS (GRAPHOLITA MOLESTA) FROM THE NIAGARA PENINSULA OF ONTARIO

Published online by Cambridge University Press:  31 May 2012

D.J. Pree
Affiliation:
Pest Management Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
K.J. Whitty
Affiliation:
Pest Management Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
L. Van Driel
Affiliation:
Pest Management Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
G.M. Walker
Affiliation:
Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland Station, Ontario, Canada L0R 2E0

Abstract

After about 20 years of wide usage in integrated pest management (IPM) programs on peach in the Niagara Peninsula of Ontario, populations of Oriental fruit moth, Grapholita molesta (Busck), resistant to azinphosmethyl and phosmet have been selected. Resistance, as expressed in first-instar larvae, was only two- to four-fold to azinphosmethyl or phosmet, but up to 45% fruit infestations have been documented in commercial blocks. Resistance to azinphosmethyl was not well expressed in adult Oriental fruit moths. In tests with larvae, cross-resistance occurred to most other organophosphorus insecticides except acephate and chlorpyrifos. Acephate was more toxic to resistant than to susceptible larvae. Resistance was higher (> 100-fold) to the methyl carbamates carbaryl and carbofuran but was approximately fivefold to the carbamoyl oxime methomyl. Cross-resistance to pyrethroids was not observed. Tests with field-collected material, either from crosses on mating trays in the field or from pupae collected in cardboard bands attached to trees, indicated that resistance was widespread across the Niagara production area but that the resistance was not uniformly expressed at all locations. Resistance was expressed in F1 larvae from crosses of susceptible females with field-collected males, indicating that the genetic change in resistant larvae was unlikely the effect of a single recessive gene. Field tests in replicated two-tree plots and in larger (0.25–0.6 ha) plots treated with up to five applications as a season-long control program indicated that neither chlorpyrifos nor acephate were as effective as a pyrethroid (deltamethrin). The sustainability of these IPM programs and potential resistance management strategies are discussed.

Résumé

Après environ 20 ans d’opérations répétées de lutte intégrée dans les vergers de pêches de la péninsule de Niagara, en Ontario, la sélection a donné lieu à des populations de la Tordeuse orientale du pêcher Grapholita molesta (Busck) qui sont devenues résistantes à l’azinphosméthyle et au phosmet. La résistance, telle qu’exprimée chez les larves de 1er stade, n’était que de 2–4 fois plus élevée en présence d’azinphosméthyle ou de phosmet, mais des infestations atteignant 45% des fruits ont été signalées dans les vergers commerciaux. La résistance à l’azinphosméthyle n’était pas très manifeste chez les adultes de la tordeuse. Au cours de tests, les larves ont affiché une résistance parallèle contre presque tous les autres insecticides organophosphorés à l’exception de l’acéphate et du chlorpyrifos. L’acéphate s’est avéré plus toxique pour les larvres résistantes que pour les larves sensibles. La résistance était plus forte (> 100 fois) contre les méthylcarbamates carbaryl et carbofuran, mais n’était que d’environ 5 fois plus forte contre le carbamoyl oxime méthomyl. Aucune résistance parallèle contre les pyréthroïdes n’a été observée. Les tests basés sur du matériel recueilli sur le terrain, obtenu par croisements dans des bacs à reproduction sur le terrain ou à partir de nymphes récoltées dans des bandes de carton attachées à des arbres, semblent indiquer que la résistance est répandue chez les insectes des vergers de Niagara, mais qu’elle ne s’exprime pas uniformément à tous les endroits. La résistance s’est avérée manifeste chez les larves de F1 issues de croisements entre des femelles sensibles et des mâles recueillis en nature, ce qui indique que le changement génétique chez les larves résistantes ne résulte sans doute pas d’un seul gène récessif. Au cours de tests répétés sur le terrain dans des parcelles de 2 arbres ou des parcelles plus grandes (0,25–0,6 ha) soumises à des programmes de lutte de toute une saison (jusqu’à 5 applications), ni le chlorpyrifos, ni l’acéphate n’ont été aussi efficaces que la deltaméthrine, un pyréthroïde. L’intérêt de poursuivre de tels programmes de lutte intégrée et la mise au point de stratégies d’aménagement devant l’éventualité d’une résistance sont examinés.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brattsten, L.B., and Metcalf, R.L.. 1973. Age-dependent variations in the response of several species of diptera to insecticidal chemicals. Pesticide Biochemistry and Physiology 3: 189198.CrossRefGoogle Scholar
Croft, B.A. 1990. Arthropod biological control agents and pesticides. Wiley-Interscience, New York.Google Scholar
Croft, B.A., and Nelson, E.E.. 1972. Toxicity of apple orchard pesticides to Michigan populations of Amblyseius fallacis. Environmental Entomology 1: 576579.CrossRefGoogle Scholar
George, J.A. 1965. Sex pheromone of the Oriental fruit moth Grapholitha molesta. The Canadian Entomologist 97: 10021007.CrossRefGoogle Scholar
Kanga, L.H.B., and Plapp, F.W. Jr., 1992. Development of a technique to monitor resistance to biodegradable insecticides in field populations of tobacco budworm. Journal of Economic Entomology 88: 487494.Google Scholar
MacLellan, C.R. 1958. Role of woodpeckers in control of the codling moth in Nova Scotia. The Canadian Entomologist 90: 1822.CrossRefGoogle Scholar
Phillips, J.H.H. 1973. Monitoring for the Oriental fruit moth with synthetic sex pheromone. Environmental Entomology 2: 10391042.CrossRefGoogle Scholar
Plapp, F.W. Jr., 1971. Insecticide resistance in Heliothis: tolerance in larvae of H. virescens as compared with H. zea to organophosphate insecticides. Journal of Economic Entomology 64: 9991002.CrossRefGoogle Scholar
Plapp, F.W. Jr., Campanola, C., Bagwell, R.D., and McCutcheon, B.F.. 1990. Management of pyrethroid-resistant tobacco budworms on cotton in the United States. pp. 327–260 in Roush, R.T., and Tabashnik, B.E. (Eds.), Pesticide Resistance in Arthropods. Chapman and Hall, New York.Google Scholar
Pree, D.J. 1979. Toxicity of phosmet, azinphosmethyl and permethrin to the Oriental fruit moth and its parasite, Macrocentrus ancylivorus. Environmental Entomology 8: 969972.Google Scholar
Pree, D.J. 1985. Grapholitha molesta. pp. 307311in Handbook of Insect Rearing, Vol. 2, Singh, P., and Moore, R.F. (Eds.), Elsevier, Amsterdam.Google Scholar
Pree, D.J. 1990. Resistance management in multiple-pest apple orchard ecosystems in eastern North America. pp. 261276in Roush, R.T., and Tabashnik, B.E. (Eds.), Pesticide Resistance in Arthropods. Chapman and Hall, New York.CrossRefGoogle Scholar
Pree, D.J., Hagley, E.A.C., Simpson, C.M., and Hikichi, A.. 1980. Resistance of the spotted tentiform leaf-miner, Phyllonoryter blancardella, to organophosphorus insecticides in southern Ontario. The Canadian Entomologist 112: 469474.CrossRefGoogle Scholar
Pree, D.J., Heme, D.H.C.Phillips, J.H.H., and Roberts, W.P.. 1983. Pest management program for peach series: Oriental fruit moth. Ontario Ministry of Agriculture and Food Agdex 212/624 83–027.Google Scholar
Pree, D.J., Marshall, D.B., and Archibald, D.E.. 1986. Resistance to pyrethroid insecticides in the spotted tentiform leafminer, Phyllonoryter blancardella, in southern Ontario. Journal of Economic Entomology 79: 318322.CrossRefGoogle Scholar
Robertson, J.L., and Priesler, H.K.. 1992. Pesticide bioassays with arthropods. CRC Press, Boca Raton, Florida.Google Scholar
Valles, S.M., Yu, S.J., and Koehler, P.G.. 1996. Biochemical mechanisms responsible for stage-dependent propoxur tolerance in the german cockroach. Pesticide Biochemistry and Physiology 54: 172180.CrossRefGoogle Scholar
Watve, C.M., and Lienk, S.E.. 1976. Toxicity of carbaryl and six organophosphorus insecticides to Amblyseius fallacis and Typhlodromus pyri from New York apple orchards. Environmental Entomology 5: 368370.CrossRefGoogle Scholar
Yu, S.J. 1983. Age variation in insecticide susceptibility and detoxification capacity of fall armyworm larvae. Journal of Economic Entomology 76: 219222.CrossRefGoogle Scholar