Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T09:42:18.761Z Has data issue: false hasContentIssue false

Impact of endosulfan on the predatory efficiency of larval Chrysoperla carnea (Neuroptera: Chrysopidae) on the eggs of Heliothis virescens and Spodoptera frugiperda (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  22 June 2015

Agustín Hernández-Juárez
Affiliation:
Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro # 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
Luis A. Aguirre-Uribe*
Affiliation:
Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro # 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
Aideé González-Ruíz
Affiliation:
Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro # 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
Julio C. Chacón-Hernández
Affiliation:
Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro # 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
Jerónimo Landeros-Flores
Affiliation:
Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro # 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
Ernesto Cerna-Chávez
Affiliation:
Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro # 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
Mariano Flores-Dávila
Affiliation:
Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro # 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
Marvin K. Harris
Affiliation:
Texas A&M University, Department of Entomology, College Station, Texas 77843, United States of America
*
1Corresponding author (e-mail: luisaguirreu@yahoo.com.mx).

Abstract

The effect of the insecticide endosulfan on the predatory efficiency of the green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) on the eggs of tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) and fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) was measured with Holling’s disc equation. Though the type II functional response was maintained in C. carnea exposed to endosulfan, the functional response parameters: attack rate (a′), handling time (Th), total handling time (Tht), searching time (Ts), and search efficiency (E) were affected for both prey offered. The predator took more time to identify, pursue, capture, consume, and digest the prey, and in general, the efficiency of the predator as a biological control agent was adversely affected.

Type
Insect Management
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Jon Sweeney

References

Ambrose, D.P., Rajan, S.J., and Raja, J.M. 2010. Impacts of Synergy-505 on the functional response and behavior of the reduviid bug, Rhynocoris marginatus . Journal of Insect Science, 10: 110.Google Scholar
Arredondo, B.H.C. 2004. Manejo y producción de Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). In Cría de insectos plaga y organismos benéficos. 2ª Edición. Edited by M.N. Bautista, M.H. Bravo, and P.C. Chavarin. Colegio de Postgraduados, Texcoco, Mexico State, Mexico. Pp. 177195.Google Scholar
Bartlett, M.S. 1947. The use of transformations. Biometrics, 3: 3952.Google Scholar
Box, G.E.P. and Cox, D.R. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26: 211246.Google Scholar
Carvalho, G.A., Bezerra, D., Souza, B., and Carvalho, C.F. 2003. Efeitos de inseticidas usados na cultura do algodoeiro sobre Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotropical Entomology, 32: 699706.Google Scholar
Claver, M.A., Ravichandran, B., Khan, M.M., and Ambrose, D.P. 2003. Impact of cypermethrin on the functional response, predatory and mating behaviour of a non-target potential biological control agent Acanthaspis pedestris (Stål) (Het., Reduviidae). Journal of Applied Entomology, 127: 1822.CrossRefGoogle Scholar
Croft, B.A. 1990. Arthropod biological control agents and pesticides. John Wiley and Sons-Interscience, New York, New York, United States of America.Google Scholar
da, Rocha, L. and Redaelli, L.R. 2004. Functional response of Cosmoclopius nigroannulatus (Hem.: Reduviidae) to different densities of Spartocera dentiventris (Hem.: Coreidae) nymphae. Brazilian Journal of Biology, 64: 309316.Google Scholar
Dastjerdi, R.H., Hejazi, J.M., Ganbalani, N.G., and Saber, M. 2009. Effects of some insecticides on functional response of ectoparasitoid, Habrobracon hebetor (Say) (Hym.: Braconidae). Journal of Entomology, 6: 161166.CrossRefGoogle Scholar
Elzen, G.W. 1989. Sub-lethal effect of pesticides on beneficial parasitoids. In Pesticides and non-target invertebrates. Edited by P.C. Jepson. Intercept Limited, Dorset, United Kingdom. Pp. 129150.Google Scholar
Golmohammadi, G., Hejazi, M., Iranipour, S., and Mohammadi, S.A. 2009. Lethal and sublethal effects of Endosulfan, Imidacloprid and Indoxacarb on first instar larvae of Chrysoperla carnea (Neu.: Chrysopidae) under laboratory conditions. Journal of Entomological Society of Iran, 28: 3747.Google Scholar
Hany, A.S.A., Ateff, M.M.S., and Sayed, A.A. 2010. Functional response of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) larvae to Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) eggs. Australian Journal of Basic and Applied Sciences, 4: 21822187.Google Scholar
Hassanpour, M., Mohaghegh, J., Iranipour, S., Nouri-Ganbalani, G., and Enkegaard, A. 2011. Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) to Helicoverpa armigera (Lepidoptera: Noctuidae): effect of prey and predator stages. Insect Science, 18: 217224. Available from http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7917.2010.01360.x/abstract [accessed 7 August 2014].Google Scholar
Holling, C.S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91: 385398.Google Scholar
Juliano, S.A. and Williams, F.M. 1987. A comparison of methods for estimating the functional response parameters for the random predator equation. Journal of Animal Ecology, 56: 641653.Google Scholar
Liu, T.X. and Chen, T.Y. 2001. Effects of the insect growth regulator Fenoxycarb on immature Chrysoperla rufilabris (Neuroptera: Chrysopidae). Florida Entomologist, 84: 628633.Google Scholar
McMurtry, J.A. 1982. The use of phytoseiids for biological control: progress and future prospects. Recent advances in knowledge of the Phytoseiidae. In Proceedings of a formal conference held at the Entomological Society of America meeting, special publication 3284, Berkeley, California, December 1981. Edited by M.A. Hoy. Division of Agricultural Sciences, University of California, Berkeley, California, United States of America. Pp. 2348.Google Scholar
Meyer, J.S., Ingersoll, C.G., McDonald, L.L., and Boyce, M.S. 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology, 67: 11561166.Google Scholar
Muma, M.H. 1959. Chrysopidae associated with citrus in Florida. Florida Entomologist, 42: 2129.Google Scholar
Murdoch, W.W. and Oaten, A. 1975. Predation and population stability. Advances in Ecological Research, 9: 1131.Google Scholar
Nasreen, A., Mustafa, G., and Ashfaq, M. 2003. Selectivity of some insecticides to Chrysoperla carnea (Stephen) (Neuroptera: Chrysopidae) in laboratory. Pakistan Journal of Biological Sciences, 6: 536538.Google Scholar
Purcell, M.F., Stark, J.D., and Messing, R.H. 1994. Effects of insecticides on three tephritid fruit flies and associated braconid parasitoids in Hawaii. Journal of Economic Entomology, 87: 14551462.Google Scholar
Real, A.L. 1977. The kinetics of functional response. The American Naturalist, 111: 289300.CrossRefGoogle Scholar
Řezáč, M., Pekár, S., and Stará, J. 2010. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum . BioControl, 55: 503510.Google Scholar
Ridgway, R.L. and Murphy, W.L. 1984. Biological control in the field. In Biology of Chrysopidae. Series Entomologica 27. Edited by M. Canard, Y. Séméria, and T.R. New. Dr. W. Junk Publishers, Boston, Massachusetts, United States of America. Available from http://www.readbag.com/trinidadbirding-publications-biologyofchrysopidae [accessed 6 May 2015].Google Scholar
Sabelis, M.W. 1985. Predation on spider mites. Spider mites, their biology, natural enemies and control. In World crop pests. Volume IB. Edited by W. Helle and M.W. Sabelis. Elsevier, Amsterdam, the Netherlands.Google Scholar
SAS Institute. 2002. The SAS system for windows, release 9.0. SAS Institute, Cary, North Carolina, United States of America.Google Scholar
Schenk, D. and Bacher, S. 2002. Functional response of a generalist insect predator to one of its prey species in the field. Journal of Animal Ecology, 71: 524531.CrossRefGoogle Scholar
Ulhaq, M.M., Sattar, A., Salihah, Z., Farid, A., Usman, A., and Khattak, S.U.K. 2006. Effect of different artificial diets on the biology of adult green lacewing (Chrysoperla carnea Stephens). Songklanakarin Journal of Science and Technology, 28: 18.Google Scholar
Zar, J.H. 2010. Biostatistical analysis, 5th edition, Prentice Hall, Upper Saddle River, New Jersey, United States of America.Google Scholar