Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-03T21:09:26.027Z Has data issue: false hasContentIssue false

COPULATION AND OVIPOSITION BEHAVIOUR OF PROTOPIOPHILA LITIGATA (DIPTERA: PIOPHILIDAE)

Published online by Cambridge University Press:  31 May 2012

Russell Bonduriansky
Affiliation:
Department of Zoology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Ronald J. Brooks
Affiliation:
Department of Zoology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Using field and laboratory (stereoscope) observations, we investigated copulation and oviposition behaviours of Protopiophila litigata Bonduriansky, which mates and oviposits exclusively on discarded cervid antlers. Typically, a male leapt onto a female, briefly tapped the sides of her abdomen with his legs, then stimulated her abdominal tip with his tarsi, parameres, and gonopods until she extended her genitalia (~4 min), after which the pair established genital lock (~10 min). Meanwhile, the female emigrated to a part of the antler where density of single males was lower. Following sperm transfer (~87 min) and genital separation (~5 min), the female deposited and ingested two droplets containing spermatozoa (~6 min). Then she oviposited (~29 min) into cracks or pores in the antler’s surface while the male remained in tandem and pushed away single males with his wings. Males often wrestled for possession of females, but take-overs were rare. Whereas most aspects of the copulation-oviposition cycle of P. litigata are characteristic of other necrophagous or scatophagous flies, the manner in which P. litigata females expel and ingest ejaculate materials after copulation has not been reported in any other-species of Diptera.

Résumé

Des observations sur le terrain et en laboratoire (à la loupe binoculaire) nous ont permis d’étudier les comportements d’accouplement et de ponte chez Protopiophila litigata Bonduriansky, qui s’accouple et pond exclusivement sur les bois rejetés des cervidés. De façon caractéristique, le mâle saute sur la femelle, frappe brièvement les côtés de son abdomen avec ses pattes, stimule ensuite le bout de son abdomen avec ses tarses, ses paramères et ses gonopodes jusqu’à ce qu’elle déploie ses genitalia (~4 min), après quoi leurs genitalia s’unissent (~10 min). Pendant ce temps la femelle émigré vers la partie des bois où la densité des mâles non accouplés est plus faible. Après transfert du sperme (~87 min) et séparation des genitalia (~5 min), la femelle émet et ingère deux gouttelettes contenant des spermatozoïdes (~6 min). Ensuite, elle pond ses oeufs (~29 min) dans des crevasses ou des pores à la surface des bois, alors que le mâle reste sur elle en tandem et repousse les autres mâles avec ses ailes. Les autres mâles se battent parfois pour prendre possession de la femelle, mais réussissent rarement. Bien que la plupart des aspects du cycle accouplement-ponte de P. litigata soient caractéristiques des autres diptères nécrophages ou scatophages, l’expulsion et l’ingestion, après l’accouplement, de substances éjaculées par le mâle n’ont jamais été signalées chez d’autres espèces de diptères.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, J. 1989. The mating system of Mydas ventralis (Diptera: Mydidae). Psyche 96: 167176.CrossRefGoogle Scholar
Alcock, J. 1994. Postinsemination associations between males and females in insects: the mate-guarding hypothesis. Annual Review of Entomology 39: 121.CrossRefGoogle Scholar
Baumann, H. 1974. Biological effects of paragonial substances PS-1 and PS-2, in females of Drosophila funebris. Journal of Insect Physiology 20: 23472362.CrossRefGoogle ScholarPubMed
Bonduriansky, R. 1995. A new Nearctic species of Protopiophila Duda (Diptera: Piophilidae), with notes on its behaviour and comparison with P. latipes (Meigen). The Canadian Entomologist 127: 859863.CrossRefGoogle Scholar
Bonduriansky, R. 1996. Effects of body size on mate choice and fecundity in the antler fly, Protopiophila litigata (Diptera: Piophilidae). M.Sc. thesis, University of Guelph, Guelph, ON.Google Scholar
Bonduriansky, R., and Brooks, R.J.. 1997. A technique for measuring and marking live flies. The Canadian Entomologist 129: 827830.CrossRefGoogle Scholar
Bownes, M., and Partridge, L.. 1987. Transfer of molecules from ejaculate to females in Drosophila melanogaster and Drosophila pseudoobscura. Journal of Insect Physiology 33: 941947.CrossRefGoogle Scholar
Gwynne, D.T. 1984. Male mating effort, confidence of paternity, and insect sperm competition. pp. 117149in Smith, R.L. (Ed.), Sperm Competition and the Evolution of Animal Mating Systems. Academic Press, Toronto.CrossRefGoogle Scholar
Gwynne, D.T., and Snedden, A.W.. 1995. Paternity and female remating in Requena verticalis (Orthoptera: Tettigoniidae). Ecological Entomology 20: 191194.CrossRefGoogle Scholar
Heinrich, B., and Pantle, C.. 1975. Thermoregulation in small flies (Syrphus sp.): basking and shivering. Journal of Experimental Biology 62: 599610.CrossRefGoogle Scholar
Hieber, C.S., and Cohen, J.A.. 1983. Sexual selection in the lovebug, Plecia nearctica: the role of male choice. Evolution 37: 987992.Google ScholarPubMed
Jones, B.L., Graham, P.P., and Kelly, R.F.. 1971. Microorganisms as inducers of oviposition for the cheese skipper, Piophila casei (L.) Diptera. Journal of Milk and Food Technology 34: 410415.CrossRefGoogle Scholar
Markow, T.A. 1988. Drosophila males provide a material contribution to offspring sired by other males. Functional Ecology 2: 7779.CrossRefGoogle Scholar
Markow, T.A., and Ankney, P.F.. 1984. Drosophila males contribute to oogenesis in a multiple mating species. Science (Washington, D.C.) 224: 302303.CrossRefGoogle Scholar
Otronen, M. 1984. The effect of differences in body size on the male territorial system of the fly Dryomyza anilis. Animal Behaviour 32: 882890.CrossRefGoogle Scholar
Parker, G.A. 1970 a. The reproductive behaviour and the nature of sexual selection in Scatophaga stercoraria L. (Diptera: Scatophagidae). IV. Epigamic recognition and competition between males for the possession of females. Behaviour 37: 113139.CrossRefGoogle Scholar
Parker, G.A. 1970 b. The reproductive behaviour and the nature of sexual selection in Scatophaga stercoraria L. (Diptera: Scatophagidae). V. The female's behaviour at the oviposition site. Behaviour 37: 140168.CrossRefGoogle Scholar
Parker, G.A. 1971. The reproductive behaviour and the nature of sexual selection in Scatophaga stercoraria L. (Diptera: Scatophagidae). VI. The adaptive significance of emigration from the oviposition site during the phase of genital contact. Journal of Animal Ecology 40: 215233.CrossRefGoogle Scholar
Parker, G.A. 1972. Reproductive behaviour of Sepsis cynipsea (L.) (Diptera: Sepsidae). II. The significance of the precopulatory passive phase and emigration. Behaviour 41: 242250.CrossRefGoogle Scholar
Parker, G.A. 1974. Courtship persistence and female-guarding as male time investment strategies. Behaviour 48: 157184.CrossRefGoogle Scholar
Simmons, L.W., and Parker, G.A.. 1989. Nuptial feeding in insects: mating effort versus paternal investment. Ethology 81: 332343.CrossRefGoogle Scholar
Spieth, H.T. 1952. Mating behavior within the genus Drosophila (Diptera). Bulletin of the American Museum of Natural History 99: 399474.Google Scholar
Spieth, H.T. 1984. Courtship behaviors of the Hawaiian picture-winged Drosophila. University of California Publications in Entomology 103.Google Scholar
Steele, R.H. 1986. Courtship feeding in Drosophila subobscura. I. The nutritional significance of courtship feeding. Animal Behaviour 34: 10871098.CrossRefGoogle Scholar
Thornhill, R. 1983. Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. The American Naturalist 122: 765788.CrossRefGoogle Scholar
Toft, C.A. 1989. Population structure and mating system of a desert bee fly (Lordotus pulchrissimus; Diptera: Bombyliidae). 2. Female demography, copulations and characteristics of swarm sites. Oikos 54: 359369.CrossRefGoogle Scholar
Wickler, W. 1986. Mating costs versus parental investment: a reply to Gwynne. Ethology 71: 7879.CrossRefGoogle Scholar
Yuval, B., and Bouskila, A.. 1993. Temporal dynamics of mating and predation in mosquito swarms. Oecologia 95: 6569.CrossRefGoogle ScholarPubMed