Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-w9nzq Total loading time: 0.258 Render date: 2021-07-31T06:28:15.620Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Conservation of forest-dwelling arthropod species: simultaneous management of many small and heterogeneous risks1

Published online by Cambridge University Press:  02 April 2012

John R. Spence
Affiliation:
Department of Renewable Resources, 751 General Services Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
David W. Langor
Affiliation:
Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320 – 122 Street, Edmonton, Alberta, Canada, T6H 3S5
Joshua M. Jacobs
Affiliation:
Department of Renewable Resources, 751 General Services Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E3, and Départment des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
Timothy T. Work
Affiliation:
Départment des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
W. Jan A. Volney
Affiliation:
Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320 – 122 Street, Edmonton, Alberta, Canada, T6H 3S5
Corresponding
E-mail address:

Abstract

The Canadian insect fauna is too inadequately understood to support well-informed assessments about its conservation status; however, the foregoing collection of synthetic papers illustrates potential threats from industrial forestry. Loss of forest species and dramatic changes in forest insect assemblages driven by forestry activities are well illustrated by studies from places where industrial forest management has been more intensive or of longer duration. Improved understanding of how arthropod species are coupled to habitats, especially microhabitats, appears to be central to progress toward their conservation. Studies of arthropods conducted at the species level are most relevant for applied conservation purposes, because only species-level work that is well documented with voucher specimens provides adequate comparative data to document faunal change. Although taxonomic infrastructure required to support such work is seriously under-resourced in Canada, entomologists can help themselves by producing useful modern resources for species identification, by undertaking collaborative biodiversity work that minimizes the split between taxonomists and ecologists, and by supporting incentives for work at the species level. Securing the future of arthropod diversity in Canadian forests through effective policy will require sound regionally defined bases for whole-fauna conservation that mesh with broader land-use planning. Building these will require a practical understanding of how “ecosite”-classification systems relate to arthropod diversity, accurate inventories of the predisturbance forest fauna in all regions, and development of sound monitoring plans designed to both detect faunal change efficiently and identify its drivers. Such monitoring plans should include both baseline inventories and monitoring of designated control areas. In addition, effective biomonitoring efforts will facilitate the development of suites of arthropod indicators, accommodate both seasonal (especially phenological) and annual variation, clarify the relationship between cost-effective samples and reality, and ensure adequate consideration of “rare” species. Return on investment in monitoring will depend on effective preplanned linkage to policy development that can respond to drivers of faunal change in a way that effectively addresses undesired changes.

Résumé

La faune entomologique canadienne n’est pas assez bien connue pour qu’on puisse évaluer de façon avisée son statut de conservation; néanmoins, la présente série de travaux de synthèse signale des menaces potentielles posées par l’industrie forestière. Des études réalisées dans des sites où la gestion industrielle des forêts a été plus importante ou s’est faite sur une plus longue période mettent bien en évidence des pertes d’insectes forestiers et des changements spectaculaires dans les peuplements d’insectes forestiers causés par les activités forestières. Tout progrès dans la conservation des arthropodes semble être relié à une meilleure compréhension du lien qui unit les espèces d’arthropodes aux habitats, et particulièrement aux microhabitats. Les études sur les arthropodes faites au niveau de l’espèce sont celles qui sont les plus pertinentes pour atteindre les objectifs appliqués de conservation, parce que seuls les travaux faits au niveau de l’espèce et bien appuyés par des spécimens de référence fournissent les données comparatives adéquates pour évaluer les changements faunistiques. Bien que le personnel spécialisé en taxonomie nécessaire pour réaliser de tels travaux fasse sérieusement défaut au Canada, les entomologistes peuvent s’aider mutuellement en produisant des outils modernes pour l’identification des espèces, en travaillant en collaboration sur la biodiversité de façon à minimiser la division entre les taxonomistes et les écologistes et en favorisant les études au niveau spécifique. Afin d’assurer dans le futur le maintien de la biodiversité des arthropodes dans les forêts canadiennes à l’aide de politiques efficaces, il sera nécessaire d’avoir des données de base solides sur la conservation de l’ensemble de la faune à l’échelle régionale et de les intégrer à la planification de l’utilisation des terres. La mise en place de ces banques de données nécessitera une compréhension de la relation entre les systèmes de classification des « écosites » et la diversité des arthropodes, des inventaires précis de la faune forestière d’avant les perturbations dans toutes les régions et l’élaboration de plans de surveillance permettant de détecter efficacement les changements faunistiques et d’en identifier les causes. De tels plans de surveillance devraient comprendre à la fois des inventaires de base et la surveillance de sites témoins choisis. De plus, des efforts efficaces de surveillance biologique devraient inclure l’utilisation de séries d’arthropodes indicateurs, la prise en considération de la variation saisonnière (particulièrement phénologique) et annuelle, l’examen de la relation entre un échantillonnage à meilleur coût et la réalité pratique et un intérêt suffisant pour les espèces “rares”. Le rendement de l’investissement en surveillance dépendra de la mise en place préalable d’un lien efficace avec l’élaboration de politiques qui réagissent aux causes de manière à contrer efficacement les changements indésirables.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andelman, S.J., and Fagan, W. F. 2000. Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proceedings of the National Academy of Sciences of the United States of America, 97: 59545959.CrossRefGoogle ScholarPubMed
Andison, D.W. 2003. Tactical forest planning and landscape design. In Towards sustainable management of the boreal forest. Edited by Burton, P.J., Messier, C., Smith, D.W., and Adamowicz, W. L.. NRC Research Press, Ottawa, Ontario. pp. 433480.Google Scholar
Angelstam, P., Boutin, S., Schmiegelow, F., Villard, M.-A., Drapeau, P., Host, G., Innes, J., Isachenko, G., Kuuluvainen, T., Mönkkönen, M., Niemelä, J., Niemi, G., Roberge, J.-M., Spence, J.R., and Stone, D. 2005. Targets for boreal forest biodiversity conservation — a rationale for macroecological research and adaptive m anagement. Ecological Bulletins, 51: 487509.Google Scholar
Buddle, C.M., and Shorthouse, D.P. 2008. Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests. The Canadian Entomologist, 140: 437452.CrossRefGoogle Scholar
Buddle, C.M., Spence, J.R., and Langor, D.W. 2000. Succession of boreal spider assemblages following wildfire and harvesting. Ecography, 23: 424436.CrossRefGoogle Scholar
Buddle, C.M., Beguin, J., Bolduc, E., Mercado, A., Sackett, T. E., Selby, R.D., Varady-Szabo, H., and Zeran, R.M. 2005. The importance and use of rarefaction for comparative biodiversity research with forest arthropod assemblages. The Canadian Entomologist, 137: 120127.CrossRefGoogle Scholar
Buddle, C.M., Langor, D.W., Spence, J.R., Pohl, G.R., and Spence, J.R. 2006. Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biological Conservation, 128: 346357.CrossRefGoogle Scholar
Burton, P.J., Messier, C., Smith, D.W., and Adamowicz, W.L. (Editors). 2003. Towards sustainable management of the boreal forest. NRC Research Press, Ottawa, Ontario.Google Scholar
Cardoso, P., Silva, I., de Oliveira, N.G., and Serrano, A.R.M. 2004. Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biological Conservation, 117: 453459.CrossRefGoogle Scholar
Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nunez, P., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H., Losos, E., and Hubbell, S.P. Jr., 2002. Beta-diversity in tropical forest trees. Science (Washington, D.C.), 295: 666669.CrossRefGoogle ScholarPubMed
Coyne, J.A., Orr, H.A., and Futuyma, D.J. 1988. Do we need a new definition of species? Systematic Zoology, 37: 190200.CrossRefGoogle Scholar
Danks, H.V. 1996. How to assess insect biodiversity without wasting your time. Document Series No. 5, Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario.Google Scholar
Danks, H.V. 2004. Seasonal adaptations in arctic insects. Integrative and Comparative Biology, 44: 8594.CrossRefGoogle ScholarPubMed
Danks, H.V., and Ball, G.E. 1993. Systematics andentomology: some major themes. Memoirs of the Entomological Society of Canada, 165: 257272.CrossRefGoogle Scholar
Deans, A.M., Malcolm, J.R., Smith, S.M., and Bellocq, M.I. 2005. Edge effects and the responses of aerial insect assemblages to structural-retention harvesting in Canadian boreal peatland forests. Forest Ecology and Management, 204: 249266.CrossRefGoogle Scholar
Drakare, S., Lennon, J.J., and Hillebrand, H. 2006. The imprint of the geographical, evolutionary and ecological context on species—area relationships. Ecology Letters, 9: 215227.CrossRefGoogle ScholarPubMed
Duelli, P., and Obrist, M.K. 2003. Biodiversity indicators: the choice of values and measures. Agriculture, Ecosystems and Environment, 98: 8798.CrossRefGoogle Scholar
Eiswerth, M.E., and Haney, J.C. 2001. Maximizing conserved biodiversity: why ecosystem indicators and thresholds matter. Ecological Economics, 38: 259274.CrossRefGoogle Scholar
Erwin, T.L. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopterists Bulletin, 36: 7475.Google Scholar
Environment Canada. 2004. An invasive alien species strategy for Canada [online]. Available from http://www.ec.gc.ca/eee-ias/98DB3ACF-94FE-4573-AE0F-95133A03C5E9/Final_IAS_Strategic_Plan_smaller_e.pdf/ [accessed 24 March 2008].Google Scholar
Esch, E., Jacobs, J.M., Bergeron, C., and Spence, J.R. 2008. Correcting for detection biases in the pitfall trapping of ground beetles (Coleoptera: Carabidae). In Back to the Roots or Back to the Future? Towards a N ew Synthesis between Taxonomic, Ecological and Biogeographical Approaches in Carabidology: Proceedings of the XIII European Carabidologists Meeting, Blagoevgrad, Bulgaria, 20–24 August 2007. Edited by Penev, L., Erwin, T., and Assmann, T.. Pensoft Publishers, Sofia, Bulgaria. In press.Google Scholar
Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology and Systematics, 34: 487515.CrossRefGoogle Scholar
Failing, L., and Gregory, R. 2003. Ten common mistakes in designing biodiversity indicators for forest policy. Journal of Environmental Management, 68: 121132.CrossRefGoogle ScholarPubMed
Gandhi, K.J.K., Spence, J.R., Langor, D.W., and Morgantini, L.E. 2001. Fire-residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Biological Conservation, 102: 131141.CrossRefGoogle Scholar
Gandhi, K.J., Spence, J.R., Langor, D.W., Morgantini, L.E., and Cryer, K. 2004. Harvest residuals as stand analogues of fire residuals for litterdwelling beetles (Coleoptera: Carabidae and Staphylinidae). Canadian Journal of Forest Research, 34: 13191331.CrossRefGoogle Scholar
Gibb, H., and Hjältén, J. 2007. Effects of low severity burning after clear-cutting on mid-boreal ant communities in the two years after fire. Journal of Insect Conservation, 11: 169175.CrossRefGoogle Scholar
Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391.CrossRefGoogle Scholar
Groot, A., Gauthier, S., and Bergeron, Y. 2004. Stand dynamics modeling approaches for multicohort management of eastern Canadian boreal forests. Silva Fennica, 38: 437448.CrossRefGoogle Scholar
Hanski, I. 2007. Insect conservation in boreal forests [online]. Journal of Insect Conservation. doi: 10.1007/s10841–007–9085–6.CrossRefGoogle Scholar
Hanski, I., and Ovaskainen, O. 2002. Extinction debt at extinction threshold. Conservation Biology, 16: 666673.CrossRefGoogle Scholar
Harrison, S., and Bruna, E. 1999. Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography, 22: 225232.CrossRefGoogle Scholar
Hartley, D.J., Koivula, M.K., Spence, J.R., Pelletier, R., and Ball, G.E. 2007. Effects of urbanization on ground beetle assemblages (Coleoptera, Carabidae) of grassland habitats in western Canada. Ecography, 30: 673684.CrossRefGoogle Scholar
Harvey, B.D., Leduc, A., Gauthier, S., and Bergeron, Y. 2002. Stand–landscape integration in natural disturbance-based management of the southern boreal forest. Forest Ecology and Management, 155: 369385.CrossRefGoogle Scholar
Horn, S., and Ulyshen, M.D. 2007. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest [online]. Journal of Insect Conservation. doi: 10.1007/s10841–007–9122–5.CrossRefGoogle Scholar
Jacobs, J.M., Work, T.T., and Spence, J.R. 2008. Influences of succession and harvest intensity on ground beetle (Coleoptera: Carabidae) populations in the boreal mixedwood forests of Alberta, Canada: species matter. In Back to the Roots or Back to the Future? Towards a New Synthesis between Taxonomic, Ecological and Biogeographical Approaches in Carabidology, Proceedings of the XIII European Carabidologists Meeting, Blagoevgrad, Bulgaria, August 20–24 2007. Edited by Penev, L., Erwin, T., and Assmann, T.. Pensoft Publishers, Sofia, Bulgaria. In press.Google Scholar
Janzen, D.H. 1977. Why are there so many species of insects? In Proceedings of the XV International Congress of Entomology, Washington, D.C., 19–27 August 1996. Edited by Packer, J.. Entomological Society of America, College Park, Maryland.Google Scholar
Jonsell, M., and Nordlander, G. 2002. Insects in polypore fungi as indicator species: a comparison between forest sites differing in amounts and continuity of dead wood. Forest Ecology and Management, 157: 101118.CrossRefGoogle Scholar
Kangas, J., and Kuusipalo, J. 1993. Integrating biodiversity into forest management planning and decision-making. Forest Ecology and Management, 61: 115.CrossRefGoogle Scholar
Kennedy, M.I.L., Lantz, V. A., and MacLean, D.A. 2007. Forest and economic impacts of alternative management strategies on Crown land in New Brunswick. Canadian Journal of Forest Research, 37: 26242636.CrossRefGoogle Scholar
Koivula, M., and Spence, J.R. 2006. Effects of postfire salvage logging on boreal mixed-wood ground beetle assemblages (Coleoptera, Carabidae). Forest Ecology and Management, 236: 102112.CrossRefGoogle Scholar
Koivula, M., Cobb, T. P., Déchêne, A.D., Jacobs, J.M., and Spence, J.R. 2006. Responses of two Sericoda Kirby, 1837 (Coleoptera: Carabidae) species to forest harvesting, wildfire, and burn severity. Entomologia Fennica, 17: 315324.Google Scholar
Komonen, A. 2003. Hotspots of insect diversity in boreal forests. Conservation Biology, 17: 976981.CrossRefGoogle Scholar
Langor, D.W., and Spence, J.R. 2006. Arthropods as ecological indicators of sustainability in Canadian forests. Forestry Chronicle, 82: 344350.CrossRefGoogle Scholar
Langor, D.W., DeHaas, L., Foottit, R. 2008 a. Non-native herbivorous arthropods on woody plants in Canada. Biological Invasions. In press.Google Scholar
Langor, D.W., Hammond, H.E.J., Spence, J.R., Jacobs, J and Cobb, T. P. 2008 b. Saproxylic bee -tle assemblages in Canadian forests: diversity, ecology, and conservation. The Canadian Entomologist, 140: 453474.CrossRefGoogle Scholar
Lee, T. M., and Jetz, W. 2008. Future battlegrounds for conservation under global change [online]. Proceedings of the Royal Society of London B Biological Sciences. doi: 10.1098/rspb.2007.1732.CrossRefGoogle Scholar
Leopold, A. 1953. Round river: from the journals of Aldo Leopold. Oxford University Press, New York.Google Scholar
Levins, R. 1966. The strategy of model building in population biology. A merican Scientist, 54: 421431.Google Scholar
Lindenmayer, D.B., and Franklin, J.F. 2002. Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, Washington, D.C.Google Scholar
Lindroth, C.H. 19611969. The ground beetles (Carabidae, excl. Cincindelinae) of Canada and Alaska. Opuscula Entomologica Supplementum, 20, 24, 29, 33, 34, and 35: 11192.Google Scholar
MacKenzie, P., Nichols, J.D., Sutton, N., Kawanishi, K., and Bailey, L.L. 2005. Improving inferences in population studies of rare species that are detected imperfectly. Ecology, 86: 11011113.CrossRefGoogle Scholar
Martikainen, P., and Kouki, J., 2003. Sampling the rarest: t hreatened beetles in boreal forest biodiversity inventories. Biodiversity and Conservation, 12: 18151831.CrossRefGoogle Scholar
Matern, A., Drees, C., Meyer, H., and Assmann, T. 2007. Population ecology of the rare carabid beetle Carabus variolosus (Coleoptera: Carabidae) in north-west Germany [online]. Journal of Insect Conservation. doi: 10.1007/s10841–007–9096–3.CrossRefGoogle Scholar
Mawdsley, J.R. 2007. Use of simple remote sensing tools to expedite surveys for rare tiger beetles (Insecta: Coleoptera: Cicindelidae) [online]. Journal of Insect Conservation. doi: 10.1007/s10841–007–9113–6.CrossRefGoogle Scholar
May, R.M., Lawton, J.H., and Stork, N.E. 1995. Assessing extinction rates. In Extinction rates. Edited by Lawton, J. and May, R.. Oxford University Press, Oxford, United Kingdom. pp. 124.Google Scholar
McArdle, B.H. 1990. When rare species are not there? Oikos, 57: 276277.CrossRefGoogle Scholar
McGuinness, C.A. 2007. Carabid beetle (Coleoptera: Carabidae) conservation in New Zealand. Journal of Insect Conservation, 11: 3141.CrossRefGoogle Scholar
Mikkelson, B., and Mikkelson, D.P. 2006. Urban legends reference pages [online]. Available from http://www.snopes.com/quotes/reagan/redwoods.asp [accessed 31 March 2008].Google Scholar
Missa, O., Basset, Y., Alonso, A., Miller, S.E., Curletti, G., De Meyer, M., Eardley, C., Mansell, M.W., and Wagner, T. 2008. Monitoring arthropods in at ropical landscape: relative effects of sampling methods and habitat types on trap catches [online]. Journal of Insect Conservation. doi: 10.1007/s10841–007–9130–5.CrossRefGoogle Scholar
Müller, J., Bussler, H., and Kneib, T. 2008. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. Journal of Insect Conservation, 12: 107124.CrossRefGoogle Scholar
New, T. R. 2007. Understanding the requirements of the insects we seek to conserve. Journal of Insect Conservation, 11: 9597.CrossRefGoogle Scholar
Niehues, F.-J., Hockman, P., and Weber, F. 1996. Genetics and dynamics of a Carabus auronitens population in the Westphalian Lowlands (Coleoptera, Carabidae). Annales Zoologici Fennici, 33: 8596.Google Scholar
Niemelä, J.K., and Spence, J.R. 1994. Distribution of forest dwelling carabids (Coleoptera): spatial scale and the concept of communities. Ecography, 17: 166175.CrossRefGoogle Scholar
Niemelä, J., and Spence, J.R. 1999. Dynamics of local expansion by an introduced species: Pterostichus melanarius (Coleoptera, Carabidae) in Alberta, Canada. Diversity and Distributions, 5: 121127.CrossRefGoogle Scholar
Niemelä, J., Haila, Y., Halme, E., Pajunen, T., and Punttila, P. 1992. Small-scale heterogeneity in the spatial-distribution of carabid beetles in the southern Finnish taiga. Journal of Biogeography, 19: 173181.CrossRefGoogle Scholar
Niemelä, J., Langor, D.W., and Spence, J.R. 1993. Effects of clear-cut harvesting on boreal groundbeetle assemblages (Coleoptera: Carabidae) in western Canada. Conservation Biology, 7: 551561.CrossRefGoogle Scholar
Niemelä, J., Spence, J.R., and Cárcamo, H. 1997. Impact of an introduced carabid species on a native assemblage: a field experiment. Ecography, 20: 643652.CrossRefGoogle Scholar
Niemelä, J., Kotze, D.J., Venn, S., Penev, L., Stoyanov, I., Spence, J., Hartley, D., and Montes de Oca, E. 2002. Carabid beetle assemblages (Coleoptera, Carabidae) across urban—rural gradients: an international comparison. Landscape Ecology, 17: 387401.CrossRefGoogle Scholar
Niemelä, J., Koivula, M., and Kotze, D.J. 2007. The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. Journal of Insect Conservation, 11: 518.CrossRefGoogle Scholar
Noss, R.F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 4: 355364.CrossRefGoogle Scholar
Oliver, I., and Beattie, A.J. 1996. Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology, 10: 99109.CrossRefGoogle Scholar
Pellet, J. 2008. Seasonal variation in detectability of butterflies surveyed with Pollard walks. Journal of Insect Conservation, 12: 1551621.CrossRefGoogle Scholar
Perry, D. 1994. Forest ecosystems. Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
Pimm, S.L. 2001. The world according to Pimm. McGraw–Hill, New York.Google Scholar
Pohl, G.R., Langor, D.W., and Spence, J.R. 2007. Harvesting and regeneration of western Canadian montane forests: implications for rove beetle conservation (Coleoptera: Staphylinidae). Biological Conservation, 137: 294307.CrossRefGoogle Scholar
Pohl, G., Langor, D., Klimaszewski, J., Work, T., and Paquin, P. 2008. Rove beetles (Coleoptera: Staphylinidae) in northern Nearctic forests. The Canadian Entomologist, 140: 415436.CrossRefGoogle Scholar
Reaka-Kudla, M.L., Wilson, D.E., and Wilson, E.O. 1997. Biodiversity II. Joseph Henry Press, Washington, D.C.Google Scholar
Reid, W.V. 1992. How many species will there be? In Tropical deforestation and species extinction. Edited by Whitmore, T. and Sayer, J.. Chapman and Hall, London.Google Scholar
Richardson, B.J., and Oberprieler, R.G. 2007. The diversity of Linnaean communities: a way of detecting invertebrate groups at risk of extinction. Journal of Insect Conservation, 11: 287297.CrossRefGoogle Scholar
Richardson, J.S. 2008. Aquatic arthropods and forestry: large-scale land-use effects on aquatic systems in northern Nearctic temperate regions. The Canadian Entomologist, 140: 495509.CrossRefGoogle Scholar
Rockwood, P. 1995. Landscape planning for biodiversity. Landscape and Urban Planning, 31: 379385.CrossRefGoogle Scholar
Schreiner, R., and Irmier, U. 2008. Niche differentiation and preferences of Elaphrus cupreus Duftschmid, 1812 and Elaphrus uliginosus (Fabricius, 1792) (Coleoptera: Carabidae) as reason for their different endangerment in central Europe [online]. Journal of Insect Conservation. doi: 10.1007/s10841–007–9142–9.CrossRefGoogle Scholar
Scudder, G.G.E. 1979. Present patterns in the fauna and flora of Canada. Memoirs of the Entomological Society of Canada, 108: 87179.CrossRefGoogle Scholar
Secretariat of the Convention on Biological Diversity. 1992. The Convention on Biological Diversity [online]. Available from http://www.cbd.int/convention/ [accessed 24 March 2008].Google Scholar
Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins, 49: 1141.Google Scholar
Siitonen, J., and Martikainen, P. 1994. Occurrence of rare and threatened insects living on decaying Populus tremula: a comparison between Finnish and Russian Karelia. Scandinavian Journal of Forest Research, 9: 185191.CrossRefGoogle Scholar
Simberloff, D.S. 1986. Are we on the verge of a mass extinction in tropical rainforests? In Dynamics of extinction. Edited by Elliot, D.. John Wiley and Sons, New York.Google Scholar
Simberloff, D.S. 1998. Flagships, umbrellas, and keystones: is single-species management passé in the landscape era. Biological Conservation, 83: 247257.CrossRefGoogle Scholar
Southwood, T.R.E., and Henderson, P.A. 2000. Ecological methods. Blackwell Science Ltd., Oxford, United Kingdom.Google Scholar
Spence, J.R. 2001. The new boreal forestry: adjusting timber management to accommodate biodiversity. Trends in Ecology and Evolution, 16: 591593.CrossRefGoogle Scholar
Spence, J.R, and Niemelä, J.K. 1994. Sampling carabid assemblages with pitfall traps: the madness and the method. The Canadian Entomologist, 126: 881894.CrossRefGoogle Scholar
Spence, J.R., Langor, D.W., Niemelä, J., Cárcamo, H.A., and Currie, C.R. 1996. Northern forestry and carabids: the case for concern about oldgrowth species. Annales Zoologici Fennici, 33: 173184.Google Scholar
Spence, J.R., Buddle, C.M., Gandhi, K., Langor, D.W., Volney, W.J.A., Hammond, H.E.J., and Pohl, G.R. 1999. Invertebrate biodiversity, forestry and emulation of natural disturbance: a down-to-earth perspective. United States Department of Agriculture Forest Service General Technical Report PNW-GTR-461. pp. 8090.Google Scholar
Sroka, K., and Finch, O.-D. 2006. Ground-beetle diversity in ancient woodland remnants in northwestern Germany (Coleoptera, Carabidae) [online]. Journal of Insect Conservation. doi: 10.1007/s10841–006–9008–y.CrossRefGoogle Scholar
Subramanian, K.A., and Sivaramakrishnan, K.G. 2005. Habitat and microhabitat distribution of stream insect communities of the Western Ghats. Current Science, 89: 976987.Google Scholar
Summerville, K.S., and Crist, T. O. 2008. Structure and conservation of lepidopteran communities in managed forests of northeastern North America: a review. The Canadian Entomologist, 140: 475494.CrossRefGoogle Scholar
Taki, H., Viana, B.F., Kevan, P.G., Silva, F.O., and Buck, M. 2008. Does forest loss affect the communities of trap-nesting wasps (Hymenoptera: Aculeata) in forests? Landscape vs. local habitat conditions. Journal of Insect Conservation, 12: 1521.CrossRefGoogle Scholar
Tilman, D., May, R.M., Lehman, C.L., and Nowak, M.A. 2002. Habitat destruction and the extinction debt. Nature (London), 371: 6566.CrossRefGoogle Scholar
Ward, P.D. 1997. The call of distant mammoths: why the ice age mammals disappeared. Copernicus, New York.CrossRefGoogle Scholar
Whittaker, R.H., Levin, S.A., and Root, R.B. 1973. Niche, habitat, and ecotope. American Naturalist, 107: 321338.CrossRefGoogle Scholar
Wikars, L.-O. 2002. Dependence on fire in wood-living insects: an experiment with burned and unburned birch and spruce logs. Journal of Insect Conservation, 6: 112.CrossRefGoogle Scholar
Williams, P.H., and Gaston, K.L. 1994. Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation, 67: 211217.CrossRefGoogle Scholar
Wilson, E.O. (Editor). 1988. Biodiversity. National Academy Press, Washington, D.C.Google Scholar
Wilson, E.O. 1992. The diversity of life. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Wilson, E.O. 2002. The future of life. Knopf, New York.Google Scholar
Work, T.T., Spence, J.R., Volney, W.J.A., and Burton, P.J. 2003 a. Sustainable forest management as license to think and to try something different. In Towards sustainable m anagement of the boreal forest. Edited by Burton, P.J., Messier, C., Smith, D.W., and Adamowicz, W.L.. NRC Research Press, Ottawa, Ontario. pp. 953970.Google Scholar
Work, T.T., Spence, J.R., Volney, W.J.A., Morgantini, L.E., and Innes, J.L. 2003 b. Integrating biodiversity and forestry practices in Western Canada. The Forestry Chronicle, 79: 906916.CrossRefGoogle Scholar
Work, T.T., Shorthouse, D.P., Spence, J.R, Volney, W.J.A., and Langor, D.W. 2004. Coarse-filter conservation strategies in boreal mixedwood forests: initial responses about invertebrates from the EMEND experiment. Canadian Journal of Forest Research, 34: 417430.CrossRefGoogle Scholar
Work, T.T., Koivula, M., Klimaszewski, J., Langor, D., Spence, J., Sweeny, J., and Hebert, C. 2008. Evaluation of carabid beetles as indicators of forest change in Canada. The Canadian Entomologist, 140: 393414.CrossRefGoogle Scholar
14
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Conservation of forest-dwelling arthropod species: simultaneous management of many small and heterogeneous risks1
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Conservation of forest-dwelling arthropod species: simultaneous management of many small and heterogeneous risks1
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Conservation of forest-dwelling arthropod species: simultaneous management of many small and heterogeneous risks1
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *