Skip to main content Accessibility help
Hostname: page-component-5c569c448b-r8t2r Total loading time: 0.391 Render date: 2022-07-03T00:53:22.932Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true


Published online by Cambridge University Press:  31 May 2012

F.A.H. Sperling
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
J.R. Spence
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3


Five species of Limnoporus Stål (L. canaliculatus [Say], L. dissortis [Drake and Harris], L. nearcticus [Kelton], L. notabilis [Drake and Hottes], and L. rufoscutellatus [Latreille]) were each sampled at 20 electrophoretic loci. Twofold differences among species in mean heterozygosity appear to be unrelated to presence of wing dimorphism. Low heterozygosity in some populations within species may reflect geographic isolation. There were substantial differences in allele frequency among, but not within, species. Limnoporus rufoscutellatus from western Europe and L. nearcticus from Alaska were the most similar pair of species, with a Nei’s standard genetic identity that is generally found only between populations of the same species. Limnoporus canaliculatus was the most divergent species, and the relationship among L. dissortis, L. notabilis, and the L. rufoscutellatusL. nearcticus pair is resolved as a trichotomy.


Cinq espèces de Limnoporus Stål (L. canaliculatus [Say], L. dissortis [Drake et Harris], L. nearcticus [Kelton], L. notabilis [Drake et Hottes] et L. rufoscutellatus [Latreille]) ont été échantillonnées à 20 loci. Des différences interspécifiques de l’ordre du double existant au niveau de l’hétérozygosité n’ont pas pu être imputées au dimorphisme alaire. Au niveau intraspécifique, l’isolation géographique de certaines populations pourrait expliquer leur faible degré d’hétérozygosité. On a noté des différences substantielles concernant la fréquence de certains allèles au niveau interspécifique, mais pas au niveau intraspécifique. Limnoporus rufoscutellatus d’Europe occidentale et L. nearcticus d’Alaska constituent la paire d’espèces les plus semblables, avec une valeur du standard d’identité génétique de Nei caractéristique de populations d’une même espèce Limnoporus canaliculatus était l’espèce la plus divergente, et la parenté entre L. dissortis, L. notabilis, et la paire L. rufoscutellatusL. nearcticus se résout à une trichotomie.

Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Andersen, N. Møller. 1975. The Limnogonus and Neogerris of the Old World. Ent. Scand. Suppl. 7: 196.Google Scholar
Andersen, N. Møller. 1982. The semiaquatic bugs (Hemiptera, Gerromorpha), phylogeny, adaptations, biogeography and classification. Entomonograph Vol. 3, Scandinavian Science Press Ltd., Klampenborg, Denmark. 455 pp.Google Scholar
Berlocher, S.H. 1984. Insect molecular systematics. A. Rev. Ent. 29: 403433.CrossRefGoogle Scholar
Brewer, G.J. 1970. Chapter 5, Specific electrophoretic systems. pp. 62137in Brewer, G.J., and Sing, C.F. (Eds.), An Introduction to Isozyme Techniques. Academic Press, New York.Google Scholar
Brooks, A.R., and Kelton, L.A.. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera). Mem. ent. Soc. Can. 51: 192.Google Scholar
Buth, D.G. 1984. The application of electrophoretic data in systematic studies. A. Rev. Ecol. Syst. 15: 501522.CrossRefGoogle Scholar
Calabrese, D.M. 1980. Zoogeography and cladistic analysis of the Gerridae. Misc. Publ. ent. Soc. Am. 11(5): 1119.Google Scholar
Cavalli-Svorza, L.L., and Edwards, A.W.F.. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 21: 550570.CrossRefGoogle Scholar
Drake, C.J., and Harris, H.M.. 1930. A wrongly identified American water-strider. Bull. Brooklyn ent. Soc. 25: 145146.Google Scholar
Drake, C.J., and Harris, H.M.. 1934. The Gerrinae of the western hemisphere (Hemiptera). Ann. Carnegie Mus. 23: 179240.Google Scholar
Drake, C.J., and Hottes, F.C.. 1925. Four undescribed species of waterstriders (Hemip.–Gerridae). Ohio J. Sci. 25: 4650.Google Scholar
Fairbairn, D.J. 1984. Microgeographic variation in body size and development time in the waterstrider, Limnoporus notabilis. Oecologia (Berlin) 61: 126133.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1981. Evolutionary trees from gene frequencies and quantitative characters: finding maximum-likelihood estimates. Evolution 35: 12291242.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1986. PHYLIP, Version 3.0. Phylogeny Inference Package. Univ. Washington, Seattle.Google Scholar
Ferguson, A. 1980. Biochemical Systematics and Evolution. John Wiley and Sons, New York and Toronto.Google Scholar
Green, D.M. 1986. Systematics and evolution of western North American frogs allied to Rana aurora and Rana boylii: electrophoretic evidence. Syst. Zool. 35: 283296.CrossRefGoogle Scholar
Gooding, R.H., and Rolseth, B.M.. 1979. Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). IV. Electrophoretic banding patterns of octanol dehydrogenase and arginine phosphokinase. Can. Ent. 111: 13071310.CrossRefGoogle Scholar
Herd, R.M., and Fenton, M.B.. 1983. An electrophoretic, morphological, and ecological investigation of a putative hybrid zone between Myotis lucifugus and Myotis yumanensis (Chiroptera: Vespertilionidae). Can. J. Zool. 61: 20292050.CrossRefGoogle Scholar
Kelton, L.A. 1961. A new species of Gerris F. from Yukon and Alaska (Hemiptera: Gerridae). Can. Ent. 93: 663665.CrossRefGoogle Scholar
Kim, J., and Burgman, M.A.. 1988. Accuracy of phylogenetic estimation methods under unequal evolutionary rates. Evolution 42: 596602.CrossRefGoogle ScholarPubMed
May, B., Wright, J.E., and Stoneking, M.. 1979. Joint segregation of biochemical loci in Salmonidae: results from experiments with Salvelinus and review of the literature on other species. J. Fish. Res. Board Can. 36: 11141128.CrossRefGoogle Scholar
Menken, S.B.J. 1980. Appendix in Allozyme polymorphism and the speciation process in small ermine moths (Lepidoptera, Yponomeutidae). Ph.D. thesis, Univ. of Leiden, Netherlands.Google Scholar
Mickevich, M.F., and Mitter, C.. 1981. Treating polymorphic characters in systematics: a phylogenetic treatment of electrophoretic data. pp. 4558in Funk, V.A., and Brooks, D.R. (Eds.), Advances in Cladistics—Proceedings of the First Meeting of the Will Hennig Society. New York Botanical Garden, New York.Google Scholar
Murray, A.M. 1986. Limnoporus rufoscutellatus (Heteroptera: Gerridae) breeding in Ireland. Ent. Rec. 86: 167168.Google Scholar
Myamoto, S. 1958. New water striders from Japan. Mushi 32: 115128.Google Scholar
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283292.CrossRefGoogle Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.Google ScholarPubMed
Nei, M., Tajima, F., and Tateno, Y.. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19: 153170.CrossRefGoogle ScholarPubMed
Nomenclature Committee of the International Union of Biochemistry. 1984. Enzyme Nomenclature. Academic Press, Orlando, Florida.Google Scholar
Nummelin, M. 1987. Ripple signals of the waterstrider Limnoporus rufoscutellatus (Heteroptera, Gerridae). Ann. Ent. Fennici 53: 1722.Google Scholar
Richardson, B.J., Baverstock, P.R., and Adams, M.. 1986. Allozyme Electrophoresis. A Handbook for Animal Systematics and Population Studies. Academic Press, Australia, Sydney.Google Scholar
Rogers, J.S. 1986. Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Zool. 35: 297310.CrossRefGoogle Scholar
Rolseth, B.M., and Gooding, R.H.. 1978. Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). I. Electrophoretic banding patterns of xanthine oxidase and aldehyde oxidase. Can. Ent. 110: 12331239.CrossRefGoogle Scholar
Schaefer, C.W., and Calabrese, D.M.. 1980. Amphi-Atlantic species pairs in two genera of water striders (Hemiptera: Gerridae). Entomologia Generalis 6: 271280.Google Scholar
Scudder, G.G.E. 1977. An annotated checklist of the aquatic and semiaquatic Hemiptera (Insecta) of British Columbia. Syesis 10: 3038.Google Scholar
Shaw, C.R., and Prasad, R.. 1970. Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem. Genet. 4: 297320.CrossRefGoogle ScholarPubMed
Spence, J.R. 1981. Experimental analysis of habitat selection in water-striders (Heteroptera: Gerridae). Ecology 62: 15051514.CrossRefGoogle Scholar
Spence, J.R. 1989. The habitat templet and life history strategies of pondskaters (Heteroptera: Gerridae): reproductive potential, phenology and wing dimorphism. Can. J. Zool. 67: 24332447.CrossRefGoogle Scholar
Spence, J.R. 1990. Introgressive hybridization in Heteroptera: the example of Limnoporus Stål (Gerridae) species in western Canada. Can. J. Zool. In press.Google Scholar
Spence, J.R., and Maddison, D.R.. 1986. Chromosomes of two hybridizing species of Limnoporus (Heteroptera: Gerridae). Proc. ent. Soc. Wash. 88: 502508.Google Scholar
Spence, J.R., and Wilcox, R.S.. 1986. The mating system of two hybridizing species of water striders (Gerridae). II. Alternative tactics of males and females. Behav. Ecol. Sociobiol. 19: 8795.CrossRefGoogle Scholar
Sperling, F.A.H. 1987. Evolution of the Papilio machaon species group in western Canada. Quaest. Ent. 23: 198315.Google Scholar
Swofford, D.L. 1985. PAUP: Phylogenetic Analysis using Parsimony. User's Manual. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Swofford, D.L. 1988. Documentation for FREQPARS. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Swofford, D.L., and Berlocher, S.H.. 1987. Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Syst. Zool. 36: 293325.CrossRefGoogle Scholar
Swofford, D.L., and Selander, R.B.. 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281283.CrossRefGoogle Scholar
Thorpe, J.P. 1982. The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. A. Rev. Ecol. Syst. 13: 139168.CrossRefGoogle Scholar
Varvio-Aho, S.-L., Jarvinen, O., and Vepsäläinen, K.. 1978. Enzyme gene variation in three species of waterstriders (Gerris) (Heteroptera, Gerridae). Ann. Ent. Fennici 44: 8794.Google Scholar
Varvio-Aho, S.-L., and Pamilo, P.. 1979. Genic differentiation of Gerris lacustris populations. Hereditas 90: 237249.CrossRefGoogle Scholar
Vepsäläinen, K. 1978. Wing dimorphism and diapause in Gerris: determination and adaptive significance. pp. 218253in Dingle, H. (Ed.), Evolution of Insect Migration and Diapause. Springer Verlag, New York.CrossRefGoogle Scholar
Vepsäläinen, K., and Nummelin, M.. 1985. Male territoriality in the waterstrider Limnoporus rufoscutellatus. Ann. Zool. Fennici 22: 441448.Google Scholar
Wayne, R.K., and O'Brien, S.J.. 1987. Allozyme divergence within the Canidae. Syst. Zool. 36: 339355.CrossRefGoogle Scholar
Wilcox, R.S., and Spence, J.R.. 1986. The mating system of two hybridizing species of water striders (Gerridae). I. Ripple signal functions. Behav. Ecol. Sociobiol. 19: 7985.CrossRefGoogle Scholar
Wright, S. 1978. Evolution and the Genetics of Populations. Volume IV. Variability Within and Among Populations. Univ. Chicago Press, Chicago.Google Scholar
Zera, A.J. 1981 a. Genetic structure of two species of waterstriders (Gerridae: Hemiptera) with differing degrees of winglessness. Evolution 35: 218225.CrossRefGoogle ScholarPubMed
Zera, A.J. 1981 b. Extensive variation at the δ-glycerophosphate dehydrogenase locus in species of water striders (Gerridae: Hemiptera). Biochem. Genet. 19: 797812.CrossRefGoogle Scholar
Zera, A.J. 1987 a. Inhibition of phosphoglucose isomerase allozymes from the wing polymorphic waterstrider, Limnoporus canaliculatus, by pentose shunt metabolites. Biochem. Genet. 25: 205223.CrossRefGoogle ScholarPubMed
Zera, A.J. 1987 b. Temperature-dependent kinetic variation among phosphoglucose isomerase allozymes from the wing-polymorphic water strider, Limnoporus canaliculatus. Mol. Biol. Evol. 4: 266285.Google ScholarPubMed
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *