Published online by Cambridge University Press: 01 March 2000
In this note we wish to prove a purely characteristic p > 0 variant of the Kodaira–Akizuki–Nakano vanishing for smooth complete intersections of dimension at least two in projective space. This has some interesting applications; in particular, we show that all Frobenius pull-backs of the tangent bundle of any complete intersection of general type and of dimension at least three in Pn are stable. We also show (see Remark 3.4) that a small modification of the techniques of [5] and a theorem of Mehta and Ramanathan (see [3]) together allow us to extend this stability result to smooth projective hypersurfaces of degree d, where (n + 1)/2 < d < n + 1 (that is, to some Fano hypersurfaces).
It is well known that behaviour of stability under Frobenius pull-backs is a subtle problem of the theory of vector bundles in characteristic p > 0, and hence this result is not without interest. We end with an obvious conjectural form of our variant for a general class of varieties.