Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-8tjh8 Total loading time: 0.217 Render date: 2021-10-20T08:37:29.445Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A simple proof of an expansion of an eta-quotient as a Lambert series

Published online by Cambridge University Press:  17 April 2009

Shaun Cooper
Affiliation:
Institute of Information and Mathematical Sciences, Massey University - Albany, Private Bag 102904, North Shore Mail Centre, Auckland, New Zealand, e-mail: s.cooper@massey.ac.nz
Rights & Permissions[Opens in a new window]

Extract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a simple proof of the identity The proof uses only a few well-known properties of the cubic theta functions a(q), b(q) and c(q). We show this identity implies the interesting definite integral .

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Berndt, B.C., Ramanujan's Notebooks, Part III (Springer-Verlag, New York, 1991).CrossRefGoogle Scholar
[2]Berndt, B.C., Ramanujan's Notebooks, Part V (Springer-Verlag, New York, 1998).CrossRefGoogle Scholar
[3]Berndt, B.C., Chan, S.H., Liu, Z.-G. and Yesilyurt, H., ‘A new identity for with an application to Ramanujan's partition congruence modulo 11’, Q.J. Math. 55 (2004), 1330.CrossRefGoogle Scholar
[4]Borwein, J.M. and Garvan, F.G., ‘Approximations to π via the Dedekind eta function’, CMS Conf. Proc. 20 (1997), 89115.Google Scholar
[5]Borwein, J.M. and Borwein, P.B., ‘A cubic counterpart of Jacobi's identity and the AGM’, Trans. Amer. Math. Soc. 323 (1991), 691701.Google Scholar
[6]Borwein, J.M., Borwein, P.B. and Garvan, F.G., ‘Some cubic modular identities of Ramanujan’, Trans. Amer. Math. Soc. 343 (1994), 3547.CrossRefGoogle Scholar
[7]Chapman, R., ‘Cubic identities for theta series in three variables’, Ramanujan J. 8 (2004), 459465.CrossRefGoogle Scholar
[8]Cooper, S., ‘Cubic theta functions’, J. Comput. Appl. Math. 160 (2003), 7794.CrossRefGoogle Scholar
[9]Farkas, H.M. and Kra, I., Theta constants, Riemann surfaces and the modular group, Graduate Studies in Mathematics 37 (Amer. Math. Soc., Providence, RI, 2001).Google Scholar
[10]Fine, N.J., Basic hypergeometric series and applications, Mathematical Surveys and Monographs 27 (American Mathematical Society, Providence, RI, 1988).CrossRefGoogle Scholar
[11]Garvan, F., ‘Cubic modular identities of Ramanujan, hypergeometric functions and ana-logues of the arithmetic-geometric mean iteration’, Contemp. Math. 166 (1994), 245264.CrossRefGoogle Scholar
[12]Hirschhorn, M., Garvan, F. and Borwein, J., ‘Cubic analogues of the Jacobian theta functions θ(z, q)’, Canad. J. Math. 45 (1993), 673694.CrossRefGoogle Scholar
[13]Hirschhorn, M., ‘Three classical results on representations of a number’, Sém. Lothar. Combin. 42 (1999). Art. B42f, 8 pp. (electronic).Google Scholar
[14]Liu, Z-G., ‘Some Eisenstein series identities associated with the Borwein functions’, Dev. Math. 4 (2001), 147169.Google Scholar
[15]Ramanujan, S., ‘On certain arithmetical functions’, Trans. Camb. Phil. Soc. 22 (1916), 159184. Reprinted in [17, 136–162].Google Scholar
[16]Ramanujan, S., Notebooks, (2 volumes) (Tata Institute of Fundamental Research, Bombay, 1957).Google Scholar
[17]Ramanujan, S., Collected papers (AMS Chelsea Publishing, Providence, RI, 2000).Google Scholar
[18]Solé, P., ‘D 4, E 6, E 8 and the AGM’, in Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995), Lecture Notes in Computer Science 948 (Springer, Berlin, 1995), pp. 448455.CrossRefGoogle Scholar
You have Access
7
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A simple proof of an expansion of an eta-quotient as a Lambert series
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A simple proof of an expansion of an eta-quotient as a Lambert series
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A simple proof of an expansion of an eta-quotient as a Lambert series
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *