Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T08:50:51.324Z Has data issue: false hasContentIssue false

On degenerate fully nonlinear elliptic equations in balls

Published online by Cambridge University Press:  17 April 2009

Neil S. Trudinger
Affiliation:
Centre for Mathematical Analysis, Australian National University, GPO Box 4, Canberra ACT 2601, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish derivative estimates and existence theorems for the Dirichlet and Neumann problems for nonlinear, degenerate elliptic equations of the form F (D2u) = g in balls. The degeneracy arises through the possible vanishing of the function g and the degenerate Monge-Ampère equation is covered as a special case.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Caffarelli, L., Nirenberg, L., Spruck, J., “The Dirichlet problem for nonlinear second order order elliptic equations I. Monge-Ampère equation”, Comm. Pure Appl. Math. 37 (1984), 369402.CrossRefGoogle Scholar
[2]Caffarelli, L., Nirenberg, L., Spruck, J., “The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian”, Acta Math. 155 (1985), 261301.CrossRefGoogle Scholar
[3]Chen, Y. “Degenerate Monge-Ampère equations” (to appear.Google Scholar
[4]Cheng, S.-Y., Yau, S.-T., “On the regularity of the Monge-Ampère equation det(∂2u/∂xixj) = F(x, u)”, Comm. Pure Appl. Math. 30 (1977), 4168.CrossRefGoogle Scholar
[5]Ivochkina, N. M., “An a priori estimate of for convex solutions of the Dirichlet problem for the Monge-Ampère equations”, Zep. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 6979 [Russian]. English translation in J. Soviet Math. 21 (1983), 689–697.Google Scholar
[6]Krylov, N. V., “On degenerate nonlinear elliptic and parabolic equations in a domain”, Izv. Akad. Nauk. SSSR 47 (1983), 75108, [Russian].Google Scholar
[7]Lieberman, G. M., Trudinger, N. S., “Nonlinear oblique boundary value problems for nonlinear elliptic equations”, Trans. Amer. Math. Soc. 295 (1986), 509546.CrossRefGoogle Scholar
[8]Lions, P.-L., “Sur les equations de Monge-Ampere I”, Manuscripta Math. 41 (1983), 144.CrossRefGoogle Scholar
[9]Lions, P.-L., Trudinger, N. S., “Linear oblique derivative problems for the uniformly elliptic Hamilton-Jacobi-Bellman equation”, Math. Z. 191 (1986), 115.CrossRefGoogle Scholar
[10]Lions, P.-L., Trudinger, N. S., Urbas, J. I. E., “The Neumann problem for equations of Monge-Ampère type”, Comm. Pure Appl. Math. 39 (1986), 539563.CrossRefGoogle Scholar
[11]Pogorelov, A. V., “The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation”, Dokl. Akad. Nauk SSSR 201 (1971), 790793, [Russian]. English translation in Soviet Math. Dokl. 12 (1971), 1727–1731.Google Scholar
[12]Trudinger, N. S., “Boundary value problems for fully nonlinear elliptic equations”, Proc. Centre for Math. Anal. Aust. Nat. Univ. 8 (1984), 6583.Google Scholar
[13]Trudinger, N. S., Urbas, J. I. E., “On second derivative estimates for equations of Monge-Ampère type”, Bull. Austral. Math. Soc. 30 (1983), 321334.CrossRefGoogle Scholar