Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T02:33:49.508Z Has data issue: false hasContentIssue false

A NONSPECTRAL PROBLEM FOR PLANAR MORAN–SIERPINSKI MEASURES

Published online by Cambridge University Press:  11 January 2023

QIAN LI*
Affiliation:
School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
SAI-DI WEI
Affiliation:
School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China e-mail: saidiwei2002@126.com

Abstract

Let $M=(\begin {smallmatrix}\rho ^{-1} & 0 \\0 & \rho ^{-1} \\\end {smallmatrix})$ be an expanding real matrix with $0<\rho <1$, and let ${\mathcal D}_n=\{(\begin {smallmatrix} 0\\ 0 \end {smallmatrix}),(\begin {smallmatrix} \sigma _n\\ 0 \end {smallmatrix}),(\begin {smallmatrix} 0\\ \gamma _n \end {smallmatrix})\}$ be digit sets with $\sigma _n,\gamma _n\in \{-1,1\}$ for each $n\ge 1$. Then the infinite convolution

$$ \begin{align*}\mu_{M,\{{\mathcal D}_n\}}=\delta_{M^{-1}{\mathcal D}_1}\ast\delta_{M^{-2}{\mathcal D}_2}\ast\cdots\end{align*} $$

is called a Moran–Sierpinski measure. We give a necessary and sufficient condition for $L^2(\,\mu _{M,\{{\mathcal D}_n\}})$ to admit an infinite orthogonal set of exponential functions. Furthermore, we give the exact cardinality of orthogonal exponential functions in $L^2(\,\mu _{M,\{{\mathcal D}_n\}})$ when $L^2(\,\mu _{M,\{{\mathcal D}_n\}})$ does not admit any infinite orthogonal set of exponential functions based on whether $\rho $ is a trinomial number or not.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the National Natural Science Foundation of China, Grant no. 11971194.

References

An, L.-X., Fu, X.-Y. and Lai, C.-K., ‘On spectral Cantor–Moran measures and a variant of Bourgain’s sum of sine problem’, Adv. Math. 349 (2019), 84124.10.1016/j.aim.2019.04.014CrossRefGoogle Scholar
An, L.-X. and Wang, C., ‘On self-similar measures’, J. Funct. Anal. 280 (2021), Article no. 108821.10.1016/j.jfa.2020.108821CrossRefGoogle Scholar
Chen, M.-L., Wang, X.-Y. and Zheng, J., ‘On the orthogonal exponential functions of a class of planar self-affine measures’, J. Math. Anal. Appl. 485(1) (2020), Article no. 123790, 11 pages.CrossRefGoogle Scholar
Chen, Y., Dong, X.-H. and Zhang, P.-F., ‘Spectrality of a class of planar self-affine measures with three-element digit sets’, Arch. Math. (Basel) 116 (2021), 327334.CrossRefGoogle Scholar
Dai, X.-R., Fu, X.-Y. and Yan, Z.-H., ‘Spectrality of self-affine Sierpinski-type measures on ${\mathbb{R}}^2$ ’, Appl. Comput. Harmon. Anal. 52 (2020), 6381.10.1016/j.acha.2019.12.001CrossRefGoogle Scholar
Dai, X.-R. and Zhu, M., ‘Non-spectral problem for Cantor measures’, Fractals 29(06) (2021), 2150157; doi:10.1142/S0218348X21501577.CrossRefGoogle Scholar
Deng, Q.-R., ‘Spectrality of one dimensional self-similar measures with consecutive digits’, J. Math. Anal. Appl. 409 (2014), 331346.CrossRefGoogle Scholar
Deng, Q.-R. and Lau, K.-S., ‘Sierpinski-type spectral self-similar measures’, J. Funct. Anal. 269 (2015), 13101326.10.1016/j.jfa.2015.06.013CrossRefGoogle Scholar
Dutkay, D. and Jorgensen, P., ‘Analysis of orthogonality and of orbits in affine iterated function systems’, Math. Z. 256 (2007), 801823.10.1007/s00209-007-0104-9CrossRefGoogle Scholar
Falconer, K., Fractal Geometry: Mathematical Foundations and Applications (Wiley, New York, 1990).Google Scholar
Fuglede, B., ‘Commuting self-adjoint partial differential operators and a group theoretic problem’, J. Funct. Anal. 16 (1974), 101121.CrossRefGoogle Scholar
Hutchinson, J., ‘Fractals and self-similarity’, Indiana Univ. Math. J. 30 (1981), 713747.10.1512/iumj.1981.30.30055CrossRefGoogle Scholar
Jorgensen, P. and Pedersen, S., ‘Dense analytic subspaces in fractal ${L}^2$ -spaces’, J. Anal. Math. 75 (1998), 185228.10.1007/BF02788699CrossRefGoogle Scholar
Li, J.-L., ‘Non-spectral problem for a class of planar self-affine measures’, J. Funct. Anal. 255 (2008), 31253148.10.1016/j.jfa.2008.04.001CrossRefGoogle Scholar
Liu, J.-C., Dong, X.-H. and Li, J.-L., ‘Non-spectral problem for the self-affine measures’, J. Funct. Anal. 273 (2017), 705720.10.1016/j.jfa.2017.04.003CrossRefGoogle Scholar