Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-14T22:53:32.891Z Has data issue: false hasContentIssue false

DISCREPANCY BOUNDS FOR THE DISTRIBUTION OF RANKIN–SELBERG L-FUNCTIONS

Published online by Cambridge University Press:  18 October 2024

XIAO PENG*
Affiliation:
School of Computer Science and Engineering, Macau University of Science and Technology, Macau, PR China
Rights & Permissions [Opens in a new window]

Abstract

We investigate the discrepancy between the distributions of the random variable $\log L (\sigma , f \times f, X)$ and that of $\log L(\sigma +it, f \times f)$, that is,

$$ \begin{align*} D_{\sigma} (T) := \sup_{\mathcal{R}} |\mathbb{P}_T(\log L(\sigma+it, f \times f) \in \mathcal{R}) - \mathbb{P}(\log L(\sigma, f \times f, X) \in \mathcal{R})|, \end{align*} $$

where the supremum is taken over rectangles $\mathcal {R}$ with sides parallel to the coordinate axes. For fixed $T>3$ and $2/3 <\sigma _0 < \sigma < 1$, we prove that

$$ \begin{align*} D_{\sigma} (T) \ll \frac{1}{(\log T)^{\sigma}}. \end{align*} $$

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $X(p)$ be independent random variables uniformly distributed on the unit circle, where p runs over the prime numbers. The random Euler product of the Riemann zeta-function is defined by $\zeta (\sigma ,X) = \prod _p (1- ({X(p)}/{p^{\sigma }}))^{-1}$ . The behaviour of $p^{-it}$ is almost like the independent random variables $X(p)$ , which indicates that $\zeta (\sigma , X)$ should be a good model for the Riemann zeta-function.

Bohr and Jessen [Reference Bohr and Jessen1] suggested that $\log \zeta (\sigma +it)$ converges in distribution to $\log \zeta (\sigma , X)$ for $\sigma> 1/2$ . In 1994, Harman and Matsumoto [Reference Harman and Matsumoto4] studied the discrepancy between the distribution of the Riemann zeta-function and that of its random model. For fixed $\sigma $ with $1/2 <\sigma \leq 1$ and any $\varepsilon>0$ , they proved that the discrepancy

$$ \begin{align*}D_{\sigma, \zeta} (T) := \sup_{\mathcal{R}} |\mathbb{P}_T(\log \zeta(\sigma+it) \in \mathcal{R}) - \mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R})|,\end{align*} $$

where the supremum is taken over rectangles $\mathcal {R}$ with sides parallel to the coordinate axes, satisfies the bound $D_{\sigma , \zeta } (T) \ll {1}/{(\log T)^{(4\sigma -2)/(21+8\sigma )-\varepsilon }}$ . Here, $\mathbb {P}_T (f(t) \in \mathcal {R}) := T^{-1} \text {meas}\{T \leq t \leq 2T: f(t) \in \mathcal {R}\}$ . Lamzouri et al. [Reference Lamzouri, Lester and Radziwiłł8] improved the result by showing that $D_{\sigma , \zeta } (T) \ll {1}/{(\log T)^{\sigma }}$ .

Dong et al. [Reference Dong, Wang and Zhang3] analysed the discrepancy between the distribution of values of Dirichlet L-functions and the distribution of values of random models for Dirichlet L-functions in the q-aspect. Lee [Reference Lee9] investigated the upper bound on the discrepancy between the joint distribution of L-functions on the line $\sigma = 1/2 + 1/G(T), t \in [T, 2T]$ , and that of their random models, where $\log \log T \leq G(T) \leq (\log T)/(\log \log T)^2$ .

Let f be a primitive holomorphic cusp form of weight k for ${\mathrm {SL}}_2(\mathbb {Z})$ . The normalised Fourier expansion at the cusp $\infty $ is $f(z)=\sum _{n \geq 1}\lambda _f(n)n^{{(k-1)}/{2}}e^{2\pi inz}$ , where $\lambda _f(n) \in \mathbb {R}$ , $n = 1, 2, \ldots, $ are normalised eigenvalues of Hecke operators $T(n)$ with $\lambda _f(1)=1$ , that is, $T(n)f=\lambda _f(n)f$ .

According to Deligne [Reference Deligne2], for all prime numbers p, there are complex numbers $\alpha _f(p)$ and $\beta _f(p)$ , satisfying

(1.1) $$ \begin{align} \left\{\! \begin{aligned} & |\alpha_f(p)| = \alpha_f(p)\beta_f(p) = 1, \\ & \lambda_f(p^{\nu}) = \sum_{0\leq j \leq \nu} \alpha_f(p)^{\nu -j} \beta_f(p)^{\,j} \quad (\nu \geq 1). \end{aligned} \right. \end{align} $$

The function $\lambda _f(n)$ is multiplicative. Moreover, $\lambda _f(p)$ is real and satisfies Deligne’s inequality $|\lambda _f(n)| \leq d(n)$ for $n \geq 1$ , where $d(n)$ is the divisor function. In particular, $|\lambda _f(p)| \leq 2$ . For $\mathrm {Re}\, s>1$ , the L-function attached to f is defined by

$$ \begin{align*} L(s, f) = \sum_{n \geq 1} \frac{\lambda_f(n)}{n^s} = \prod_p \bigg(1 - \frac{\alpha_f(p)}{p^s}\bigg)^{-1} \bigg(1 - \frac{\beta_f(p)}{p^s}\bigg)^{-1}. \end{align*} $$

For $\mathrm {Re}\, s>1$ , the Rankin–Selberg L-function associated to f is defined by

$$ \begin{align*} L(s, f \times f) := \prod_p \bigg(1 - \frac{\alpha_f(p)^2}{p^s}\bigg)^{-1} \bigg(1 - \frac{\beta_f(p)^2}{p^s}\bigg)^{-1} \bigg(1 - \frac{1}{p^s}\bigg)^{-2} = \zeta(2s) \sum_{n = 1}^{\infty} \frac{\lambda_f(n)^2}{n^s}. \end{align*} $$

According to [Reference Iwaniec and Kowalski6], for $\mathrm {Re} s>1$ ,

$$ \begin{align*} \log L(s, f \times f) = \sum_{n=2}^{\infty} \frac{\Lambda_{f \times f}(n)}{n^s \log n}, \end{align*} $$

where

$$ \begin{align*}\Lambda_{f \times f}(n) := \begin{cases} |\alpha_f(p)^{\nu} + \beta_f(p)^{\nu}|^2 \log p & \text{for } n = p^{\nu}, \\ 0 & \text{otherwise}. \end{cases} \end{align*} $$

For automorphic L-functions, from [Reference Lü10],

(1.2) $$ \begin{align} \sum_{p \leq x} \lambda_f^4(p) \sim C_f \frac{x}{\log x}. \end{align} $$

Recently, Xiao and Zhai [Reference Xiao and Zhai12] studied the discrepancy between the distributions of $\log L(\sigma +it,f)$ and its corresponding random variable $\log L(\sigma , f, X)$ . In this article, we investigate the discrepancy between the distribution of the random variable $\log L (\sigma , f \times f, X)$ and that of $\log L(\sigma +it, f \times f)$ . Define the Euler product

$$ \begin{align*} L(\sigma, f \times f, X) = \prod_p \bigg(1 - \frac{\alpha_f(p)^2 X(p)}{p^{\sigma}}\bigg)^{-1} \bigg(1 - \frac{\beta_f(p)^2 X(p)}{p^{\sigma}}\bigg)^{-1} \bigg(1 - \frac{X(p)}{p^{\sigma}}\bigg)^{-2}, \end{align*} $$

which converges almost surely for $\sigma> \tfrac 12$ . Consider

$$ \begin{align*} D_{\sigma} (T) := \sup_{\mathcal{R}} |\mathbb{P}_T(\log L(\sigma+it, f \times f) \in \mathcal{R}) - \mathbb{P}(\log L(\sigma, f \times f, X) \in \mathcal{R})|, \end{align*} $$

where the supremum is taken over rectangles $\mathcal {R}$ with sides parallel to the coordinate axes. We prove the following theorem.

Theorem 1.1. Let $T>3$ and $2/3 <\sigma _0 < \sigma < 1$ , where T and $\sigma _0$ are fixed. Then,

$$ \begin{align*} D_{\sigma} (T) \ll \frac{1}{(\log T)^{\sigma}}, \end{align*} $$

where the implied constant depends on f and $\sigma $ .

The proof follows the method in [Reference Lamzouri, Lester and Radziwiłł8]. The range of $\sigma $ depends on the zero density theorem of $L(s,f\times f)$ and $L(s, \mathrm {sym}^2f)$ by noticing that $L(s, f \times f) = \zeta (s) L(s, \mathrm {sym}^2f)$ . Unfortunately, the zero density of $L(s, \mathrm {sym}^2f)$ can only be obtained nontrivially when $2/3 < \sigma \leq 1$ (see [Reference Huang, Zhai and Zhang5]).

2 Preliminaries

This section gathers several preliminary results. Since several proofs are essentially the same as those in [Reference Lamzouri, Lester and Radziwiłł8], we omit their details. For any prime number p and integer $\nu>0$ , we define $b_f(p^{\nu }) = |\alpha _f(p)^{\nu } + \beta _f(p)^{\nu }|^2$ . Thanks to (1.1),

$$ \begin{align*} |b_f(p^{\nu})| \leq 4. \end{align*} $$

From probability theory, if the characteristic functions of two real-valued random variables are close, then the corresponding probability distributions are also close. The key to proving Theorem 1.1 is to demonstrate that the joint distribution characteristic function of $\mathrm {Re} \log L(\sigma + it)$ and $\mathrm {Im} \log L(\sigma + it)$ can be well estimated. For u, $v \in \mathbb {R}$ , we define

(2.1) $$ \begin{align} \Phi_{\sigma, T}(u,v) := \frac{1}{T} \int_T^{2T} \exp (iu\,\mathrm{Re} \log L(\sigma + it, f \times f) + iv\,\mathrm{Im} \log L(\sigma + it, f \times f))\,dt \end{align} $$

and

(2.2) $$ \begin{align} &\Phi_{\sigma}^{\mathrm{rand}}(u,v) := {\mathbb{E}} (\exp (iu\,{\mathrm{Re}} \log L(\sigma, f \times f, X) + iv\,{\mathrm{Im}}\log L(\sigma, f\times f, X))). \end{align} $$

Lemma 2.1 [Reference Lamzouri7, Lemma 4.3].

Let $y>2$ and $|t|\geq y+3$ be real numbers. Let $\tfrac 12< \sigma _0 < \sigma \leq 1$ and suppose that the rectangle $\{s: \sigma _0 < \mathrm {Re} (s) \leq 1, |\mathrm {Im} (s) - t|\leq y+2\}$ does not contain zeros of $L(s, f \times f)$ . Then,

$$ \begin{align*} \log L(s, f \times f) = \sum_{p^{\nu} \leq y} \frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma+it)}} + O\bigg(\frac{\log |t|}{(\sigma_1 - \sigma_0)^2} y^{\sigma_1 - \sigma}\bigg), \end{align*} $$

where $\sigma _1 = \min (\sigma _0 + {1}/{\log y}, {(\sigma + \sigma _0)}/{2})$ .

Lemma 2.2. Define $N(\sigma _0,T)$ as the number of zeros $\rho _f = \beta _f + i \gamma _f$ of $L(s, f \times f)$ with $\sigma _0 \leq \beta _f \leq 1$ and $|\gamma _f| \leq T$ . Then,

$$ \begin{align*} N(\sigma_0,T) = \begin{cases} T^{{5(1-\sigma_0)}/{(3-2\sigma_0)}+\epsilon} & \text{for } 1/2 < \sigma_0 < 23/32, \\ T^{{26(1-\sigma_0)}/{(11-4\sigma_0)}+\epsilon} & \text{for } 23/32 \leq \sigma_0 < 3/4, \\ T^{{2(1-\sigma_0)}/{\sigma_0}+\epsilon} & \text{for } 3/4 \leq \sigma_0 < 1. \end{cases} \end{align*} $$

Proof. Here, $L(s, f \times f)$ can be written as $L(s, f \times f) = \zeta (s) L(s, \mathrm {sym}^2f)$ . The result is easily obtained from the zero density of the Riemann zeta-function [Reference Ye and Zhang13] and symmetric square L-functions [Reference Huang, Zhai and Zhang5].

Lemma 2.3. Let $2/3 < \sigma <1$ and $3 \leq Y \leq T/2$ . Then, for all $t \in [T, 2T]$ ,

$$ \begin{align*} \log L(s, f \times f) = \sum_{p^{\nu} \leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma +it)}} + O_f(Y^{-{(\sigma-2/3)}/{2}}\log^3 T) \end{align*} $$

except for a set $\mathcal {D}(T)$ with $\text {meas}(\mathcal {D}(T)) \ll _f T^{{(10/3-5/2\sigma )}/{(7/3-\sigma )}+\epsilon }Y$ .

Proof. Take $\sigma _0 = \tfrac 12 (\tfrac 23 + \sigma )$ in Lemma 2.1. The result follows easily from Lemma 2.2.

The details of the next three results can be found in [Reference Xiao and Zhai12].

Lemma 2.4. Let $2/3 < \sigma <1$ , $128 \leq y \leq z$ and $\{b(p)\}$ be any real sequence with $|b(p)| \leq 4$ . For any positive integer $k \leq {\log T}/{20 \log z}$ ,

$$ \begin{align*} \frac{1}{T} \int_{T}^{2T} \bigg| \sum_{y \leq p \leq z} \frac{b(p)}{p^{\sigma +it}} \bigg|^{2k} \,dt \ll k! \bigg(\sum_{y \leq p \leq z} \frac{(b(p))^2}{p^{2 \sigma}}\bigg)^k + T^{-{1}/{3}}. \end{align*} $$

Moreover,

$$ \begin{align*} \mathbb{E}\bigg ( \bigg|\sum_{y \leq p \leq z} \frac{b(p)X(p)}{p^{\sigma}} \bigg|^{2k}\bigg) \ll k! \bigg(\sum_{y \leq p \leq z} \frac{(b(p))^2}{p^{2\sigma}}\bigg)^k. \end{align*} $$

Proposition 2.5. Let ${2}/{3} < \sigma < 1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . There exist $a_1 = a_1(\sigma , A)>0$ and $a_1' = a_1'(\sigma , A)>0$ such that

$$ \begin{align*} \mathbb{P}_T\bigg(\bigg|\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma+it)}}\bigg| \geq \frac{(\log T)^{1-\sigma}}{\log \log T}\bigg) \ll \exp \bigg(-a_1 \frac{\log T}{\log \log T}\bigg) \end{align*} $$

and

$$ \begin{align*} \mathbb{P}\bigg(\bigg|\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu\sigma}}\bigg| \geq \frac{(\log T)^{1-\sigma}}{\log \log T}\bigg) \ll \exp \bigg(-a_1' \frac{\log T}{\log \log T}\bigg). \end{align*} $$

Lemma 2.6. Let Y be a large positive real number and $|z|\leq Y^{\sigma - 1/2}$ . Then,

$$ \begin{align*} \mathbb{E} (|L(\sigma, f \times f, X)|^z) & = \mathbb{E} \bigg( \exp \bigg( z \,\mathrm{Re} \bigg( \sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu\sigma}} \bigg) \bigg) \bigg)\\ &\quad + O \bigg( \mathbb{E} (|L(\sigma, f \times f, X)|^{\mathrm{Re} (z))}) \frac{|z|}{Y^{\sigma - 1/2}} \bigg). \end{align*} $$

Moreover, if u, v are real numbers such that $|u|+|v| \leq Y^{\sigma - 1/2}$ , then

$$ \begin{align*} \Phi_{\sigma}^{rand} (u,v) & = \mathbb{E} \bigg( \exp \bigg( iu\,\mathrm{Re} \bigg( \sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu\sigma}}\bigg) + iv \,\mathrm{Im} \bigg(\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu\sigma}} \bigg) \bigg) \bigg) \\ &\quad + O\bigg(\frac{|u|+|v|}{Y^{\sigma - 1/2}}\bigg). \end{align*} $$

Lemma 2.7. Let $2/3 < \sigma <1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . For any positive integer $k \leq \log T/(20 A \log \log z)$ , there exist $a_2(\sigma )> 0$ and $a_2'(\sigma )> 0$ such that

$$ \begin{align*} \frac{1}{T} \int_{T}^{2T} \bigg| \sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma+it)}} \bigg|^{2k}\,dt \ll \bigg(\frac{a_2(\sigma)k^{1-\sigma}}{(\log k)^{\sigma}}\bigg)^{2k} \end{align*} $$

and

$$ \begin{align*} \mathbb{E} \bigg(\bigg|\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu\sigma}}\bigg|^{2k}\bigg) \ll \bigg(\frac{a_2'(\sigma)k^{1-\sigma}}{(\log k)^{\sigma}}\bigg)^{2k}. \end{align*} $$

Here the implied constants are absolute.

Proof. By using Lemma 2.4, the lemma follows easily from the method in [Reference Lamzouri, Lester and Radziwiłł8, Lemma 3.3].

Lemma 2.8 [Reference Tsang11, Lemma 6].

Let ${2}/{3} < \sigma < 1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . For any positive integers u, v such that $u+v \leq \log T/(6A \log \log T)$ ,

$$ \begin{align*} \begin{aligned} \frac{1}{T} & \int_{T}^{2T} \bigg(\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma+it)}}\bigg)^u \bigg(\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma-it)}}\bigg)^v \,dt \\ & = \mathbb{E}\bigg(\bigg(\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu\sigma}}\bigg)^u \bigg(\sum_{p^{\nu}\leq Y}\frac{\overline{b_f(p^{\nu})X(p)^{\nu}}}{\nu p^{\nu\sigma}}\bigg)^v\bigg) + O\bigg(\frac{Y^{u+v}}{\sqrt{T}}\bigg), \end{aligned} \end{align*} $$

with an absolute implied constant.

Proposition 2.9. Let $2/3 < \sigma <1$ and $Y = (\log T)^A$ for a fixed $A \geq 1$ . For all complex numbers $z_1$ , $z_2$ , there exist positive constants $a_3 = a_3(\sigma ,A)>0$ and $a_4 = a_4(\sigma ,A)>0$ with $|z_1|$ , $|z_2| \leq a_3(\log T)^{\sigma }$ such that

$$ \begin{align*} \begin{aligned} \frac{1}{T} & \int_{\mathcal{A}(T)} \exp \bigg(z_1 \sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma+it)}} + z_2 \sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma-it)}}\bigg)\,dt \\ & = \mathbb{E} \bigg(\exp \bigg(z_1 \sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu\sigma}} + z_2 \sum_{p^{\nu}\leq Y}\frac{\overline{b_f(p^{\nu})X(p)^{\nu}}}{\nu p^{\nu\sigma}} \bigg) \bigg) + O \bigg(\exp \bigg(-a_4 \frac{\log T}{ \log \log T}\bigg)\bigg), \end{aligned} \end{align*} $$

with an absolute implied constant. Here, $\mathcal {A}(T)$ is the set of those $t \in [T, 2T]$ such that

$$ \begin{align*} \bigg|\sum_{p^{\nu}\leq Y}\frac{b_f(p^{\nu})}{\nu p^{\nu(\sigma+it)}}\bigg| \leq \frac{(\log T)^{1-\sigma}}{\log \log T}. \end{align*} $$

Proof. The proof is the same as that of [Reference Lamzouri, Lester and Radziwiłł8, Proposition 2.3] by using Lemma 2.7, Proposition 2.5 and Lemma 2.8.

Proposition 2.10. Let $2/3 < \sigma _0 < \sigma <1$ and $A \geq 1$ be fixed. There exists a constant $a_5 = a_5(\sigma , A)$ such that for $|u|$ , $|v| \leq a_5 (\log T)^{\sigma }$ ,

$$ \begin{align*} \Phi_{\sigma, T}(u,v) = \Phi_{\sigma}^{\mathrm{rand}} (u,v) + O\bigg(\frac{1}{(\log T)^A}\bigg), \end{align*} $$

with the implied constant depending on $\sigma _0$ only.

Proof. Follow the general idea of the proof of [Reference Lamzouri, Lester and Radziwiłł8, Theorem 2.1]. Let $B=B(A)$ be a large enough constant. Let $ Y = (\log T)^{B/(\sigma - 2/3)}$ . By Lemma 2.3,

$$ \begin{align*} \log L(s, f \times f) = \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma+it)}} + O\bigg(\frac{1}{(\log T)^{B/2-3}}\bigg) \end{align*} $$

for all $t \in [T, 2T]$ , except for a set $\mathcal {D}(T)$ of measure $T^{1-d(\sigma )}$ for some constant $d(\sigma )>0$ . Define $\mathcal {C}(T) = \{t \in [T, 2T], t \notin \mathcal {D} (T)\}$ . Then,

$$ \begin{align*} & \Phi_{\sigma,T} (u,v) \\& \quad = \frac{1}{T} \int_{\mathcal{C}(T)} \exp ( iu\, \mathrm{Re} \log L(\sigma+it, f \times f) + iv\, \mathrm{Im} \log L(\sigma+it, f \times f) ) \,dt + O (T^{-d(\sigma)} )\\& \quad = \frac{1}{T} \int_{\mathcal{C}(T)} \exp \bigg(iu\, \mathrm{Re} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma+it)}} + iv\, \mathrm{Im} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma+it)}} \bigg) \,dt + O \bigg(\frac{1}{(\log T)^{B/2-4}}\bigg)\\& \quad = \frac{1}{T} \int_T^{2T} \exp \bigg(iu\, \mathrm{Re} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma+it)}} + iv\, \mathrm{Im} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma+it)}} \bigg) \,dt + O\bigg(\frac{1}{(\log T)^{B/2-4}}\bigg). \end{align*} $$

Let $\mathcal {A}(T)$ be defined as in Proposition 2.9 and take $z_1={i}(u-iv)/2$ and $z_2 = i(u+iv)/2$ in Proposition 2.9. From Proposition 2.5 and Lemma 2.6, the integral above is

$$ \begin{align*} & = \frac{1}{T} \int_{\mathcal{A}(T)} \exp \bigg( iu \,\mathrm{Re} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma+it)}} + iv\, \mathrm{Im} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})}{\nu p^{\nu (\sigma+it)}} \bigg) \,dt + O\bigg(\frac{1}{(\log T)^B}\bigg)\\& = \mathbb{E} \bigg(\exp \bigg(iu\, \mathrm{Re} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu (\sigma+it)}} + iv\, \mathrm{Im} \sum_{p^{\nu}\leq Y} \frac{b_f(p^{\nu})X(p)^{\nu}}{\nu p^{\nu (\sigma+it)}}\bigg) \bigg) + O\bigg(\frac{1}{(\log T)^B}\bigg)\\& = \Phi_{\sigma}^{\mathrm{rand}} (u,v) + O\bigg(\frac{1}{(\log T)^{B-1}}\bigg).\\[-39pt] \end{align*} $$

Lemma 2.11 [Reference Lamzouri, Lester and Radziwiłł8, Lemma 7.2].

Let $\lambda>0$ be a real number. Let $\chi (y)=1$ if $y>1$ and ${0}$ otherwise. For any $c>0$ ,

$$ \begin{align*} \chi(y) \leq \frac{1}{2 \pi i} \int_{(c)} y^s \frac{e^{\lambda s}-1}{\lambda s} \,\frac{ds}{s} \quad\text{for } y>0. \end{align*} $$

We cite the following smooth approximation [Reference Lamzouri, Lester and Radziwiłł8] for the indicator function.

Lemma 2.12. Let $\mathcal {R} = \{z=x+iy \in \mathbb {C}: m_1 < x < m_2, n_1 < y < n_2\}$ for real numbers $m_1, m_2, n_1, n_2$ . Let $K>0$ be a real number. For any $z=x+iy \in \mathbb {C}$ , we denote the indicator function of $\mathcal {R}$ by

$$ \begin{align*} \mathbf{1}_{\mathcal{R}} (z) = W_{K, \mathcal{R}} (z) \,{+} \,&O \bigg( \frac{\sin^2 (\pi K(x-m_1))}{(\pi K(x-m_1))^2} + \frac{\sin^2 (\pi K(x-m_2))}{(\pi K(x-m_2))^2} \\ & {+}\, \frac{\sin^2 (\pi K(y-n_1))}{(\pi K(y-n_1))^2} + \frac{\sin^2 (\pi K(y-n_2))}{(\pi K(y-n_2))^2} \bigg), \end{align*} $$

where

$$ \begin{align*} W_{K, \mathcal{R}} (z) = \frac{1}{2} \mathrm{Re} \int_0^K \int_0^K &G \bigg(\frac{u}{K}\bigg) G\bigg(\frac{v}{K}\bigg) (e^{2\pi i (ux-vy)}f_{m_1,m_2}(u) \overline{f_{n_1,n_2}(v)} \\ & {-}\, e^{2\pi i (ux+vy)}f_{m_1,m_2}(u) f_{n_1,n_2}(v)) \,\frac{du}{u} \frac{dv}{v}. \end{align*} $$

Here,

$$ \begin{align*} G(u) = \frac{2u}{\pi} +2(1-u) u \cot (\pi u) \quad\text{for } u\in [0,1], \end{align*} $$

and

$$ \begin{align*} f_{\alpha,\beta}(u) = \frac{e^{-2\pi i \alpha u} - e^{-2\pi i \beta u}}{2} \quad\text{for } \alpha,\beta \in \mathbb{R}. \end{align*} $$

Lemma 2.13. Let $2/3 < \sigma <1$ . Let u be a large positive real number. There exist constants $a_6 = a_6(f, \sigma )$ and $a_6' = a_6'(f, \sigma )$ such that

$$ \begin{align*} \mathbb{E} (\exp (iu\, \mathrm{Re} \log L(\sigma, f \times f, X))) \ll \exp \bigg(-a_6\frac{u^{2/\sigma -2}}{\log u} \bigg) \end{align*} $$

and

$$ \begin{align*} \mathbb{E} (\exp (iu\, \mathrm{Im} \log L(\sigma, f \times f, X))) \ll \exp \bigg(-a_6'\frac{u^{2/\sigma -2}}{\log u} \bigg). \end{align*} $$

Proof. Follow the general idea of the proof of [Reference Lamzouri, Lester and Radziwiłł8, Lemma 6.3]. We denote the Bessel function of order 0 by $J_0(s)$ for all $s \in \mathbb {R}$ . Note that for any prime p, $\mathbb {E} (e^{is \mathrm {Re} X(p)}) = \mathbb {E} (e^{is \mathrm {Im} X(p)}) = J_0(s)$ . Since $\log (1+t)=t+O(t^2)$ for $ |t|<1$ ,

$$ \begin{align*} |\mathbb{E} & (\exp (iu\, \mathrm{Re} \log L(\sigma, f \times f, X)))|\\ & = \bigg|\mathbb{E} \bigg(\exp \bigg(iu\, \mathrm{Re} \log \bigg( \prod_p \bigg(1 - \frac{\alpha_f(p)^2 X(p)}{p^{\sigma}}\bigg)^{-1} \bigg(1 - \frac{\beta_f(p)^2 X(p)}{p^{\sigma}}\bigg)^{-1} \bigg(1 - \frac{X(p)}{p^{\sigma}}\bigg)^{-2} \bigg) \bigg)\bigg)\bigg|\\ & \leq \prod_{p>u^{2/\sigma}} \mathbb{E} \bigg(\exp \bigg(\frac{iu \lambda_f^2(p)}{p^{\sigma}} \mathrm{Re} X(p) + O \bigg(\frac{u}{p^{2\sigma}}\bigg) \bigg) \bigg) = \exp (O(u^{2/\sigma -3})) \prod_{p>u^{2/\sigma}} \bigg|J_0 \bigg(\frac{u \lambda_f^2(p)}{p^{\sigma}}\bigg)\bigg|. \end{align*} $$

For $|s|<1$ , we have $J_0(s) = 1 - ({s}/{2})^2 + O(s^4)$ . By using (1.2), for some constant $a_6 = a_6(f, \sigma ), c>0 $ , the product above is

$$ \begin{align*} = \exp \bigg\{ -\frac{u^2}{4} \sum_{p>u^{2/\sigma}} \bigg(\frac{\lambda_f^4(p)}{p^{2\sigma}} + O\bigg(\frac{u^2}{p^{4\sigma}}\bigg) \bigg) \bigg\} \leq \exp \bigg(-a_6\frac{u^{2/\sigma -2}}{\log u} \bigg). \end{align*} $$

The second inequality can be derived similarly.

3 Proof of the main theorem

Let $\mathcal {R}$ be a rectangle with sides parallel to the coordinate axes. Define $\Psi _T(\mathcal {R}) = \mathbb {P}(\log L(\sigma +it, f \times f) \in \mathcal {R}) \text { and } \Psi (\mathcal {R}) = \mathbb {P}(\log L(\sigma , f \times f, X) \in \mathcal {R})$ . Let

$$ \begin{align*} \widetilde{\mathcal{R}} = \mathcal{R} \cap [-(\log T)^3, (\log T)^3] \times [-(\log T)^3, (\log T)^3]. \end{align*} $$

According to Lemma 2.3 and Proposition 2.5, for some constant $a_7>0$ ,

$$ \begin{align*} \Psi_T(\mathcal{R}) = \Psi_T(\widetilde{\mathcal{R}}) + O \bigg(\exp \bigg(-a_7\frac{\log T}{\log \log T} \bigg) \bigg). \end{align*} $$

Similarly to [Reference Xiao and Zhai12], by using Lemmas 2.6 and 2.11, we can obtain the relationship between $\Psi (\mathcal {R})$ and $\Psi (\widetilde {\mathcal {R}})$ : for some constant $a_7'>0$ ,

$$ \begin{align*} \Psi(\mathcal{R}) = \Psi(\widetilde{\mathcal{R}}) + O \bigg(\exp \bigg(-a_7'\frac{\log T}{\log \log T} \bigg) \bigg). \end{align*} $$

Let $\mathcal {S}$ be the set of rectangles $\mathcal {R} \subset [-(\log T)^3, (\log T)^3]\times [-(\log T)^3, (\log T)^3]$ with sides parallel to the coordinate axes. Then,

$$ \begin{align*} D_{\sigma}(T) = \sup_{\mathcal{R} \subset \mathcal{S}} |\Psi_T(\mathcal{R}) - \Psi(\mathcal{R})| + O \bigg(\exp \bigg(-a_7\frac{\log T}{\log \log T} \bigg) \bigg). \end{align*} $$

In light of Lemma 2.12, choose $K = a_8(\log T)^{\sigma }$ , for some $a_8> 0$ , and $|m_1|, |m_2|, |n_1|, |n_2| \leq (\log T)^3$ . Then it follows that

(3.1) $$ \begin{align} \Psi_T(\mathcal{R})= \frac{1}{T} \int_{T}^{2T} W_{K,\mathcal{R}} (\log L(\sigma+it, f \times f))\,dt + E_1 \end{align} $$

and, in addition,

$$ \begin{align*} E_1 \ll I_T(K, m_1) + I_T(K, m_2) + J_T(K, n_1) + J_T(K, n_2), \end{align*} $$

where

(3.2) $$ \begin{align} I_T(K, m) = \frac{1}{T} \int_{T}^{2T} \frac{\sin^2(\pi K(\mathrm{Re} \log L(\sigma+it, f \times f) - m))}{(\pi K (\mathrm{Re} \log L(\sigma+it, f \times f) - m))^2} \,dt \end{align} $$

and

$$ \begin{align*} J_T(K, n) = \frac{1}{T} \int_{T}^{2T} \frac{\sin^2(\pi K(\mathrm{Im} \log L(\sigma+it, f \times f) - n))}{(\pi K (\mathrm{Im} \log L(\sigma+it, f \times f) - n))^2} \,dt. \end{align*} $$

First, we treat the main term of (3.1):

$$ \begin{align*} \begin{aligned} \frac{1}{T} & \int_{T}^{2T} W_{K,\mathcal{R}} (\log L(\sigma+it, f \times f))\,dt = \frac{1}{2} \mathrm{Re} \int_0^K \int_0^K G \bigg(\frac{u}{K}\bigg) G \bigg(\frac{v}{K}\bigg)\\ & \times (\Phi_{\sigma,T}(2\pi u, -2\pi v)f_{m_1, m_2}(u) \overline{f_{n_1,n_2}(v)} - \Phi_{\sigma, T}(2\pi u, 2\pi v) f_{m_1, m_2}(u) f_{n_1, n_2}(v) ) \,\frac{du}{u}\, \frac{dv}{v}, \end{aligned} \end{align*} $$

where $\Phi _{\sigma ,T}$ is defined by (2.1). Since $0 \leq G(u) \leq 2/\pi $ and $|f_{\alpha , \beta }(u)| \leq \pi u |\beta - \alpha |$ , by Proposition 2.10,

$$ \begin{align*} \frac{1}{T} \int_{T}^{2T} W_{K,\mathcal{R}} (\log L(\sigma+it, f \times f))\,dt = \mathbb{E} (W_{K,\mathcal{R}} (\log L(\sigma, f \times f, X))) + O \bigg(\frac{1}{(\log T)^2} \bigg). \end{align*} $$

Moreover,

$$ \begin{align*} \Psi(\mathcal{R})= \mathbb{E} ( W_{K,\mathcal{R}} (\log L(\sigma, f \times f, X))\,dt) + E_2. \end{align*} $$

Here,

$$ \begin{align*} E_2 \ll I_{\mathrm{rand}}(K, m_1) + I_{\mathrm{rand}}(K, m_2) + J_{\mathrm{rand}}(K, n_1) + J_{\mathrm{rand}}(K, n_2), \end{align*} $$

where

$$ \begin{align*} I_{\mathrm{rand}}(K, m) = \mathbb{E} \bigg( \frac{\sin^2(\pi K(\mathrm{Re} \log L(\sigma, f \times f, X) - m))}{(\pi K (\mathrm{Re} \log L(\sigma, f \times f, X) - m))^2} \bigg), \end{align*} $$

and

$$ \begin{align*} J_{\mathrm{rand}}(K, n) = \mathbb{E} \bigg( \frac{\sin^2(\pi K(\mathrm{Im} \log L(\sigma, f \times f, X) - n))}{(\pi K (\mathrm{Im} \log L(\sigma, f \times f, X) - n))^2} \bigg). \end{align*} $$

Hence,

(3.3) $$ \begin{align} \Psi_T(\mathcal{R}) = \Psi(\mathcal{R}) + E_3, \end{align} $$

where

$$ \begin{align*} E_3 = E_1 + E_2 + O \bigg(\frac{1}{(\log T)^2} \bigg). \end{align*} $$

Notice that

(3.4) $$ \begin{align} \frac{\sin^2 (\pi K x)}{(\pi K x)^2} = \frac{2(1-\cos (2 \pi K x))}{K^2(2\pi x)^2} = \frac{2}{K^2} \int_0^K (K-v) \cos (2\pi xv) \,dv. \end{align} $$

To bound $E_1$ , we use (3.4) to rewrite (3.2):

$$ \begin{align*} \begin{aligned} I_T (K, m) & = \mathrm{Re} \bigg( \frac{1}{T} \int_T^{2T} \frac{2}{K^2} \int_0^K (K-v) \exp (2\pi i v (\mathrm{Re} \log L (\sigma+it, f \times f) - m) ) \,dv\,dt \bigg)\\ & = \mathrm{Re} \frac{2}{K^2} \int_0^K (K-v) e^{-2\pi ivm} \Phi_{\sigma, T} (2\pi v, 0)\,dv. \end{aligned} \end{align*} $$

From Proposition 2.10,

$$ \begin{align*} I_T (K, m) = \mathrm{Re} \frac{2}{K^2} \int_0^K (K-v) e^{-2\pi ivm} \Phi_{\sigma}^{rand} (2\pi v, 0)\,dv + O \bigg(\frac{1}{(\log T)^9} \bigg), \end{align*} $$

uniformly for all $m \in \mathbb {R}$ . Lemma 2.13 implies that

$$ \begin{align*} I_T(K, m) \ll \frac{1}{K}. \end{align*} $$

The bound $J_T(K, n) \ll {1}/{K}$ can be obtained using the same method. Therefore,

(3.5) $$ \begin{align} E_1 \ll \frac{1}{K}. \end{align} $$

Then, using (2.2), (3.4) and Lemma 2.13,

$$ \begin{align*} \begin{aligned} I_{\mathrm{rand}} (K, m) & = \mathbb{E} \bigg(\frac{2}{K^2} \int_0^K (K-v) \cos (2\pi v [ \mathrm{Re} \log L(\sigma, f \times f, X) - m] ) \bigg) \,dv \\ & = \mathrm{Re} \frac{2}{K^2} \int_0^K (K-v) e^{-2\pi ivm} \Phi_{\sigma}^{\mathrm{rand}}(2\pi v, 0) \,dv \ll \frac{1}{K}, \end{aligned} \end{align*} $$

uniformly for all $m \in \mathbb {R}$ . Similarly, we can obtain $J_{\mathrm {rand}} (K, n) \ll {1}/{K}$ , uniformly for all $n \in \mathbb {R}$ . Thus,

(3.6) $$ \begin{align} E_2 \ll \frac{1}{K}. \end{align} $$

Combining the estimates with (3.3), (3.5) and (3.6),

$$ \begin{align*} D_{\sigma}(T) \ll \frac{1}{(\log T)^{\sigma}}, \end{align*} $$

which completes the proof.

Footnotes

The author is supported by The Science and Technology Development Fund, Macau SAR (File no. 0084/2022/A).

References

Bohr, H. and Jessen, B., ‘Über die Werteverteilung der Riemannschen Zetafunktion’, Acta Math. 54 (1930), 135.CrossRefGoogle Scholar
Deligne, P., ‘La conjecture de Weil. I’, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273307.CrossRefGoogle Scholar
Dong, Z., Wang, W. and Zhang, H., ‘Distribution of Dirichlet $L$ -functions’, Mathematika 69 (2023), 719750.CrossRefGoogle Scholar
Harman, G. and Matsumoto, K., ‘Discrepancy estimates for the value-distribution of the Riemann zeta-function, IV’, J. Lond. Math. Soc. (2) 50 (1994), 1724.CrossRefGoogle Scholar
Huang, J., Zhai, W. and Zhang, D., ‘Higher power moments of symmetric square $L$ -function’, J. Number Theory 243 (2023), 495517.CrossRefGoogle Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2021).Google Scholar
Lamzouri, Y., ‘Distribution of values of $L$ -functions at the edge of the critical strip’, Proc. Lond. Math. Soc. (3) 100 (2010), 835863.CrossRefGoogle Scholar
Lamzouri, Y., Lester, S. and Radziwiłł, M., ‘Discrepancy bounds for the distribution of the Riemann zeta-function and applications’, J. Anal. Math. 139 (2019), 453494.CrossRefGoogle Scholar
Lee, Y., ‘Discrepancy bounds for the distribution of $L$ -functions near the critical line’, Preprint, 2023, arXiv:2304.03415.Google Scholar
, G., ‘Shifted convolution sums of Fourier coefficients with divisor functions’, Acta Math. Hungar. 146 (2015), 8697.CrossRefGoogle Scholar
Tsang, K. M., The Distribution of the Values of the Riemann Zeta-function, PhD Thesis (Princeton University, 1984).Google Scholar
Xiao, X. and Zhai, S., ‘Discrepancy bounds for distribution of automorphic $L$ -functions’, Lith. Math. J. 61 (2021), 550563.CrossRefGoogle Scholar
Ye, Y. and Zhang, D., ‘Zero density for automorphic $L$ -functions’, J. Number Theory 133 (2013), 38773901.CrossRefGoogle Scholar