Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-27T23:24:15.988Z Has data issue: false hasContentIssue false

A CONJECTURE OF ZHI-WEI SUN ON MATRICES CONCERNING MULTIPLICATIVE SUBGROUPS OF FINITE FIELDS

Published online by Cambridge University Press:  27 September 2024

JIE LI
Affiliation:
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China e-mail: lijiemath@163.com
HAI-LIANG WU*
Affiliation:
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
Rights & Permissions [Opens in a new window]

Abstract

Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that

$$ \begin{align*}\det[t+\phi(s_i+s_j)+\phi(s_i-s_j)]_{1\le i,j\le (q-1)/2}=\bigg(\frac{q-1}{2}t-1\bigg)q^{{(q-3)}/{4}}.\end{align*} $$

This confirms a conjecture of Zhi-Wei Sun.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1. Introduction

Let p be an odd prime. Research on determinants involving the Legendre symbol $(\frac {\cdot }{p})$ can be traced back to Lehmer [Reference Lehmer4], Carlitz [Reference Carlitz1] and Chapman [Reference Chapman2]. For example, Carlitz [Reference Carlitz1, Theorem 4] studied the determinant

$$ \begin{align*} \det C(t):=\det\bigg[t+\bigg(\frac{i-j}{p}\bigg)\bigg]_{1\le i,j\le p-1} \end{align*} $$

and showed that

$$ \begin{align*}\det C(t)=(-1)^{{(p-1)}/{2}}p^{{(p-3)}/{2}}((p-1)t+(-1)^{{(p-1)}/{2}}).\end{align*} $$

Chapman [Reference Chapman2] investigated some variants of $\det C(t)$ . For instance, Chapman considered

$$ \begin{align*}\det C_1(t):=\det \bigg[t+\bigg(\frac{i+j-1}{p}\bigg)\bigg]_{1\le i,j\le (p-1)/2}.\end{align*} $$

If we let $\varepsilon _p>1$ and $h_p$ be the fundamental unit and the class number of $\mathbb {Q}(\sqrt {p})$ , respectively, then Chapman [Reference Chapman2] proved that

$$ \begin{align*}\det C_1(t)=\begin{cases} (-1)^{{(p-1)}/{4}}2^{{(p-1)}/{2}}(-a_pt+b_p) & \text{if}\ p\equiv 1\pmod4,\\ -2^{{(p-1)}/{2}}t & \text{if}\ p\equiv 3\pmod4, \end{cases}\end{align*} $$

where $a_p,b_p\in \mathbb {Q}$ are defined by the equality

$$ \begin{align*}\varepsilon_p^{h_p}=a_p+b_p\sqrt{p}.\end{align*} $$

In 2019, Sun [Reference Sun5] initiated the study of determinants involving the Legendre symbol and binary quadratic forms. For example, Sun considered the determinant

$$ \begin{align*}\det S_p:=\det\bigg[\bigg(\frac{i^2+j^2}{p}\bigg)\bigg]_{1\le i,j\le (p-1)/2}.\end{align*} $$

Sun [Reference Sun5, Theorem 1.2] showed that $-\det S_p$ is always a quadratic residue modulo p. See also [Reference Krachun, Petrov, Sun and Vsemirnov3, Reference Wu7] for recent work on this topic.

Recently, Sun [Reference Sun6] posed many interesting conjectures on determinants related to the Legendre symbol. We give one example.

Conjecture 1.1 (Sun; [Reference Sun6, Conjecture 1.1])

Let $p\equiv 3\pmod 4$ be a prime. Then,

$$ \begin{align*}\det\bigg[t+\bigg(\frac{i^2+j^2}{p}\bigg)+\bigg(\frac{i^2-j^2}{p}\bigg)\bigg]_{1\le i,j\le (p-1)/2}=\bigg(\frac{p-1}{2}t-1\bigg)p^{{(p-3)}/{4}}.\end{align*} $$

Motivated by these results, we will study some determinants involving the quadratic multiplicative character of a finite field. We first introduce some notation.

Let $q=p^s$ be an odd prime power with p prime and $s\in \mathbb {Z}^+$ and let $\mathbb {F}_q$ be the finite field of q elements. Let $\mathbb {F}_q^{\times }$ be the cyclic group of all nonzero elements of $\mathbb {F}_q$ . For any positive integer k which divides $q-1$ , let

$$ \begin{align*}D_k:=\{a_1,a_2,\ldots,a_{(q-1)/k}\}=\{x^k:\ x\in\mathbb{F}_q^{\times}\}\end{align*} $$

be the subgroup of all nonzero kth powers in $\mathbb {F}_q$ .

Let $\widehat {\mathbb {F}_q^{\times }}$ be the cyclic group of all multiplicative characters of $\mathbb {F}_q$ . Throughout this paper, for any $\psi \in \widehat {\mathbb {F}_q^{\times }}$ , we extend $\psi $ to $\mathbb {F}_q$ by setting $\psi (0)=0$ . Also, if $2\nmid q$ , we use the symbol $\phi $ to denote the unique quadratic multiplicative character of $\mathbb {F}_q$ , that is,

$$ \begin{align*} \phi(x)=\begin{cases} 1 & \text{if}\ x\in D_2,\\ 0 & \text{if}\ x=0,\\ -1 & \text{otherwise.} \end{cases} \end{align*} $$

Inspired by the above results, we define the matrix $A_k(t)$ by

$$ \begin{align*}A_k(t):=[t+\phi(a_i+a_j)+\phi(a_i-a_j)]_{1\le i,j\le (q-1)/k}.\end{align*} $$

The integers $c_k$ and $d_k$ , which are related to the number of $\mathbb {F}_q$ -rational points of certain hyperelliptic curves over $\mathbb {F}_q$ , are defined by

(1.1) $$ \begin{align} |\{\infty\}\cup\{(x,y)\in\mathbb{F}_q\times\mathbb{F}_q:\ y^2=x^k+1\}|=q+1-c_k \end{align} $$

and

(1.2) $$ \begin{align} |\{\infty\}\cup\{(x,y)\in\mathbb{F}_q\times\mathbb{F}_q:\ y^2=x^k-1\}|=q+1-d_k. \end{align} $$

Now we state the main results of this paper.

Theorem 1.2. Let $q=p^s$ be an odd prime power with p prime and $s\in \mathbb {Z}^+$ . Then, for any positive integer k which divides $q-1$ , the following results hold.

  1. (i) Suppose $q\equiv 1\pmod {2k}$ . Then $\det A_k(t)=0$ . In particular, if $q\equiv 1\pmod 4$ , then $\det A_2(t)=0$ .

  2. (ii) If $q\equiv 3\pmod 4$ , then

    $$ \begin{align*}\det A_2(t)=\bigg(\frac{q-1}{2}t-1\bigg)q^{{(q-3)}/{4}}.\end{align*} $$
  3. (iii) Suppose $q\equiv 1\pmod 4$ and $q\not \equiv 1\pmod {2k}$ . Then there is an integer $u_k$ such that

    $$ \begin{align*}\det A_k(t)=\bigg(\frac{q-1}{k}t-\frac{1}{k}(c_k+d_k+2)\bigg)\cdot u_k^2.\end{align*} $$

Remark 1.3. (i) Theorem 1.2(i) generalises [Reference Sun6, Theorem 1.1] to an arbitrary finite field with odd characteristic. In the case where $q=p$ is an odd prime, Theorem 1.2(ii) confirms Conjecture 1.1 posed by Zhi-Wei Sun.

(ii) For any k with $3\le k<q-1$ , $k\mid q-1$ and $q-1\not \equiv 0\pmod {2k}$ , we can also obtain the explicit value of $\det A_k(t)$ . However, finding a simple expression for $\det A_k(t)$ seems very difficult.

We will prove our main results in Section 2.

2. Proof of Theorem 1.2

Throughout this section, we let $\chi $ be a generator of $\widehat {\mathbb {F}_q^{\times }}$ . Also, for any $\chi ^i,\chi ^j\in \widehat {\mathbb {F}_q^{\times }}$ , the Jacobi sum of $\chi ^i$ and $\chi ^j$ is defined by

$$ \begin{align*}J(\chi^i,\chi^j)=\sum_{x\in\mathbb{F}_q}\chi^i(x)\chi^j(1-x).\end{align*} $$

We begin with a known result in linear algebra.

Lemma 2.1. Let n be a positive integer and let M be an $n\times n$ complex matrix. Let $\lambda _1,\ldots ,\lambda _n\in \mathbb {C}$ , and let $\mathbf{v}_1,\ldots ,\mathbf{v}_n\in \mathbb {C}^n$ be column vectors. Suppose that

$$ \begin{align*}M\mathbf{v}_i=\lambda_i\mathbf{v}_i\end{align*} $$

for $1\le i\le n$ and that the vectors $\mathbf{v}_1,\ldots ,\mathbf{v}_n$ are linearly independent over $\mathbb {C}$ . Then $\lambda _1,\ldots ,\lambda _n$ are exactly all the eigenvalues of M (counting multiplicity).

Before the proof of our main results, we first introduce the definition of circulant matrices. Let R be a commutative ring and let $b_0,b_1,\ldots ,b_{n-1}\in R$ . Then the circulant matrix of the tuple $(b_0,b_1,\ldots ,b_{n-1})$ is defined by

$$ \begin{align*}C(b_0,b_1,\ldots,b_{n-1}):=[b_{i-j}]_{0\le i,j\le n-1},\end{align*} $$

where the indices are cyclic modulo n.

The second author [Reference Wu7, Lemma 3.4] proved the following result.

Lemma 2.2. Let $n\ge 1$ be an odd integer. Let R be a commutative ring and let $b_0,\ldots ,b_{n-1}\in R$ such that $b_i=b_{n-i}$ for $1\le i\le n-1$ . Then there is an element $u\in R$ such that

$$ \begin{align*}\det C(b_0,b_1,\ldots,b_{n-1})=\bigg(\sum_{i=0}^{n-1}b_i\bigg)u^2.\end{align*} $$

Now we are in a position to prove our main results. For simplicity, we set ${n=(q-1)/k}$ .

Proof of Theorem 1.2

(i) Suppose $q-1\equiv 0\pmod {2k}$ . Let $\xi _{2k}\in \mathbb {F}_q$ be a primitive $2k$ th root of unity. Then $-1=\xi _{2k}^k\in D_k$ . Thus, for any j with $1\le j\le n$ , there exists an integer $j'$ with $1\le j'\le n$ such that $a_{j'}=-a_j$ and $j\neq j'$ . This implies that the jth column of $A_k(t)$ is the same as the $j'$ th column of $A_k(t)$ and hence $\det A_k(t)=0$ .

(ii) Suppose now $q-1\not \equiv 0\pmod {2k}$ . Then, clearly k is even. For any integers $m,n$ with $0\le m\le n-1$ and $1\le i\le n$ ,

$$ \begin{align*} \sum_{1\le j\le n} (\phi(a_i+a_j) +\phi(a_i-a_j))\chi^m(a_j) & =\sum_{1\le j\le n}\bigg(\phi\bigg(1+\frac{a_j}{a_i}\bigg)+\phi\bigg(1-\frac{a_j}{a_i}\bigg)\bigg)\ \chi^m\bigg(\frac{a_j}{a_i}\bigg)\ \chi^m(a_i)\\ & =\sum_{1\le j\le n}(\phi(1+a_j)+\phi(1-a_j))\chi^m(a_j)\chi^m(a_i). \end{align*} $$

Let

$$ \begin{align*}\mathbf{v}_m=(\chi^m(a_1),\chi^m(a_2),\ldots,\chi^m(a_n))^T \quad\text{and}\quad \lambda_m=\sum_{1\le j\le n}(\phi(1+a_j)+\phi(1-a_j))\chi^m(a_j).\end{align*} $$

By the above results,

$$ \begin{align*} A_k(0)\mathbf{v}_m=\lambda_m\mathbf{v}_m \quad\text{for } 0\le m\le n-1. \end{align*} $$

Since

$$ \begin{align*}\det [\chi^i(a_j)]_{0\le i\le n-1,1\le j\le n}=\prod_{1\le i<j\le n}(\chi(a_j)-\chi(a_i))\neq 0,\end{align*} $$

the vectors $\mathbf{v}_0,\ldots ,\mathbf{v}_{n-1}$ are linearly independent over $\mathbb {C}$ and hence by Lemma 2.1, the complex numbers $\lambda _0,\ldots ,\lambda _{n-1}$ are exactly all the eigenvalues of $A_k(0)$ .

Now let $k=2$ . Then clearly $q\equiv 3\pmod 4$ and n is odd in this case. We first evaluate $\det A_2(0)$ . By the above,

(2.1) $$ \begin{align} \det A_2(0)=\lambda_0\prod_{1\le m\le n-1}\lambda_m=\lambda_0\prod_{1\le m\le (n-1)/2}|\lambda_{2m}|^2. \end{align} $$

The last equality follows from $\overline {\lambda _m}=\lambda _{n-m}$ for $1\le m\le n-1$ . For $\lambda _0$ ,

(2.2) $$ \begin{align} \lambda_0 =\sum_{1\le j\le n}(\phi(1+a_j)+\phi(1-a_j)) =\frac{1}{2}\sum_{x\in\mathbb{F}_q^{\times}}\phi(1+x^2)-\frac{1}{2}\sum_{x\in\mathbb{F}_q^{\times}}\phi(x^2-1) =-1. \end{align} $$

The last equality follows from

$$ \begin{align*}\sum_{x\in\mathbb{F}_q}\phi(x^2\pm 1)=-1.\end{align*} $$

For $\lambda _{2m}$ with $1\le m\le (n-1)/2$ , one can verify that

(2.3) $$ \begin{align} \lambda_{2m} &=\sum_{1\le j\le n}(\phi(1+a_j)+\phi(1-a_j))\chi^{2m}(a_j) \notag \\ &=\frac{1}{2}\sum_{x\in\mathbb{F}_q}\phi(1+x^2)\chi^{2m}(x^2)+\frac{1}{2}\sum_{x\in\mathbb{F}_q}\phi(1-x^2)\chi^{2m}(-x^2) \notag \\ &=\sum_{x\in\mathbb{F}_q}\phi(1+x)\chi^{2m}(x) \notag \\ &=\sum_{x\in\mathbb{F}_q}\phi(1+x)\chi^{2m}(-x) =J(\phi,\chi^{2m}). \end{align} $$

Combining (2.2) and (2.3) with (2.1),

$$ \begin{align*}\det A_2(0)=-\prod_{1\le m\le (n-1)/2}|J(\phi,\chi^{2m})|^2=-q^{{(q-3)}/{4}}.\end{align*} $$

Now we turn to $\det A_2(t)$ . By (2.2) for $1\le j\le n$ ,

$$ \begin{align*} \sum_{1\le i\le n}(t+\phi(a_i+a_j)+\phi(a_i-a_j)) & = nt+\sum_{1\le i\le n}(\phi(1+a_j/a_i)+\phi(1-a_j/a_i))\\ & = nt+\sum_{1\le i\le n}(\phi(1+a_i)+\phi(1-a_i))\\ & = nt-1. \end{align*} $$

This implies that $(nt-1)\mid \det A_2(t)$ . Noting that $\det A_2(t)\in \mathbb {Z}[t]$ with degree $\le 1$ ,

$$ \begin{align*}\det A_2(t)=-\det A_2(0)\cdot(nt-1)=q^{{(q-3)}/{4}}\bigg(\frac{q-1}{2}t-1\bigg).\end{align*} $$

(iii) Suppose $q\equiv 1\pmod 4$ and $q\not \equiv 1\pmod {2k}$ . Clearly, $k\equiv 0\pmod 2$ in this case. Let $g\in \mathbb {F}_q$ be a generator of the cyclic group $\mathbb {F}_q^{\times }$ . Then one can verify that

$$ \begin{align*} \det A_k(t) &=\det[t+\phi(a_i+a_j)+\phi(a_i-a_j)]_{1\le i,j\le n}\\ &=\det [t+\phi(g^{k(i-j)}+1)+\phi(g^{k(i-j)}-1)]_{0\le i,j\le n-1}. \end{align*} $$

For $0\le i\le n-1$ , let

$$ \begin{align*}b_i=t+\phi(g^{ki}+1)+\phi(g^{ki}-1).\end{align*} $$

Then one can easily verify that

$$ \begin{align*}\det A_k(t)=\det C(b_0,b_1,\ldots,b_{n-1})\end{align*} $$

and that $b_i=b_{n-i}$ for $1\le i\le n-1$ . Now applying Lemma 2.2, we see that there is an element $u_k\in \mathbb {Z}[t]$ such that

$$ \begin{align*}\det A_k(t)=\bigg(\sum_{i=0}^{n-1}b_i\bigg)\cdot u_k^2.\end{align*} $$

One can verify that

$$ \begin{align*} \sum_{i=0}^{n-1}b_i &=nt+\sum_{1\le j\le n}(\phi(a_i+1)+\phi(a_i-1))\\ &=nt+\frac{1}{k}\sum_{x\in\mathbb{F}_q^{\times}}(\phi(x^k+1)+\phi(x^k-1))\\ &=nt-\frac{1}{k}(c_k+d_k+2), \end{align*} $$

where $c_k$ and $d_k$ are defined by (1.1) and (1.2), and the last equality follows from

$$ \begin{align*}\sum_{x\in\mathbb{F}_q^{\times}}\phi(x^k+1)=-c_k-1 \quad\text{and}\quad \sum_{x\in\mathbb{F}_q^{\times}}\phi(x^k-1)=-d_k-1.\end{align*} $$

As $\det A_k(t)\in \mathbb {Z}[t]$ with degree $\le 1$ , by the above, we see that $u_k\in \mathbb {Z}$ . Hence,

$$ \begin{align*}\det A_k(t)=\bigg(\frac{q-1}{k}t-\frac{1}{k}(c_k+d_k+2)\bigg)\cdot u_k^2.\end{align*} $$

In view of the above, we have completed the proof of Theorem 1.2.

Acknowledgement

The authors would like to thank the referee for helpful comments.

Footnotes

This work was supported by the Natural Science Foundation of China (Grant No. 12101321).

References

Carlitz, L., ‘Some cyclotomic matrices’, Acta Arith. 5 (1959), 293308.CrossRefGoogle Scholar
Chapman, R., ‘Determinants of Legendre symbol matrices’, Acta Arith. 115 (2004), 231244.CrossRefGoogle Scholar
Krachun, D., Petrov, F., Sun, Z.-W. and Vsemirnov, M., ‘On some determinants involving Jacobi symbols’, Finite Fields Appl. 64 (2020), Article no. 101672.CrossRefGoogle Scholar
Lehmer, D. H., ‘On certain character matrices’, Pacific J. Math. 6 (1956), 491499.CrossRefGoogle Scholar
Sun, Z.-W., ‘On some determinants with Legendre symbols entries’, Finite Fields Appl. 56 (2019), 285307.CrossRefGoogle Scholar
Sun, Z.-W., ‘Problems and results on determinants involving Legendre symbols’, Preprint, 2024, arXiv:2405.03626.Google Scholar
Wu, H.-L., ‘Elliptic curves over ${F}_p$ and determinants of Legendre matrices’, Finite Fields Appl. 76 (2021), Article no. 101929.CrossRefGoogle Scholar