Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T20:09:09.451Z Has data issue: false hasContentIssue false

COMPLETE EMBEDDINGS OF GROUPS

Published online by Cambridge University Press:  26 January 2024

MARTIN R. BRIDSON*
Affiliation:
Mathematical Institute, Andrew Wiles Building, ROQ, Woodstock Road, Oxford OX2 6GG, UK
HAMISH SHORT
Affiliation:
L.A.T.P., U.M.R. 6632, C.M.I., 39 Rue Joliot–Curie, Université de Provence, F–13453 Marseille cedex 13, France e-mail: hamish@cmi.univ-mrs.fr

Abstract

Every countable group G can be embedded in a finitely generated group $G^*$ that is hopfian and complete, that is, $G^*$ has trivial centre and every epimorphism $G^*\to G^*$ is an inner automorphism. Every finite subgroup of $G^*$ is conjugate to a finite subgroup of G. If G has a finite presentation (respectively, a finite classifying space), then so does $G^*$. Our construction of $G^*$ relies on the existence of closed hyperbolic 3-manifolds that are asymmetric and non-Haken.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

For our friend and coauthor Chuck Miller in his ninth decade, with deep respect and affection

References

Belilopetsky, M. and Lubotzky, A., ‘Finite groups and hyperbolic manifolds’, Invent. Math. 162 (2005), 459472.Google Scholar
Bridson, M. R., Hinkkanen, A. and Martin, G., ‘Quasiregular self-mappings of manifolds and word hyperbolic groups’, Compos. Math. 143 (2007), 16131622.Google Scholar
Bridson, M. R. and Short, H., ‘Inversion is possible in groups with no periodic automorphisms’, Proc. Edinb. Math. Soc. (2) 59 (2016), 1116.Google Scholar
Burton, B. A., Coward, A. and Tillmann, S., ‘Computing closed essential surfaces in knot complements’, in: SCG’13: Proceedings of the 29th Annual Symposium on Computational Geometry (eds. Chan, T. and Klein, R.) (ACM, New York, 2013), 405414.Google Scholar
Hatcher, A., ‘Boundary curves of incompressible surfaces’, Pacific J. Math. 99 (1982), 373–37.Google Scholar
Henry, S. and Weeks, J., ‘Symmetry groups of hyperbolic knots and links’, J. Knot Theory Ramifications 1 (1992), 185201.Google Scholar
Hirshon, R., ‘Some properties of endomorphisms in residually finite groups’, J. Aust. Math. Soc. 24 (1977), 117120.Google Scholar
Kapovich, I., ‘A non-quasiconvexity embedding theorem for hyperbolic groups’, Math. Proc. Cambridge Philos. Soc. 127 (1999), 461486.Google Scholar
Kodama, K. and Sakuma, M., ‘Symmetry groups of prime knots up to 10 crossings’, in: Knots 90, Proceedings of the International Conference on Knot Theory and Related Topics held in Osaka (Japan) (ed. Kawauchi, A.) (De Gruyter, Berlin, 1992), 323340.Google Scholar
Kojima, S., ‘Isometry transformations of hyperbolic 3-manifolds’, Topology Appl. 29 (1988), 297307.Google Scholar
Long, D. and Reid, A., ‘On asymmetric hyperbolic manifolds’, Math. Proc. Cambridge Philos. Soc. 138 (2005), 301306.Google Scholar
Lyndon, R. C. and Schupp, P. E., Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89 (Springer-Verlag, Berlin, 1977).Google Scholar
Menasco, W., ‘Closed incompressible surfaces in alternating knot and link complements’, Topology 23 (1984), 3744.Google Scholar
Miller, C. F. III and Schupp, P. E., ‘Embeddings into Hopfian groups’, J. Algebra 17 (1971), 171176.Google Scholar
Osin, D. V., ‘Small cancellations over relatively hyperbolic groups and embedding theorems’, Ann. of Math. (2) 172 (2010), 139.Google Scholar
Scott, G. P., ‘Compact submanifolds of 3-manifolds’, J. Lond. Math. Soc. (2) 7 (1973), 246250.Google Scholar
Sela, Z., ‘Endomorphisms of hyperbolic groups: I’, Topology 38 (1999), 301321.Google Scholar
Serre, J.-P., Trees (Springer-Verlag, Berlin, 1977).Google Scholar
Stallings, J. R., Group Theory and Three-Dimensional Manifolds, Yale Mathematical Monographs, 4 (Yale University Press, New Haven, CT, 1971).Google Scholar
Thurston, W. P., The Geometry and Topology of 3-manifolds, Princeton University Lecture Notes (Princeton University, Princeton, NJ, 1978–1981). Available online at https://library.slmath.org/books/gt3m/.Google Scholar