Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T16:36:42.033Z Has data issue: false hasContentIssue false

CHARACTER AMENABILITY AND CONTRACTIBILITY OF ABSTRACT SEGAL ALGEBRAS

Published online by Cambridge University Press:  04 August 2010

MAHMOOD ALAGHMANDAN
Affiliation:
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran (email: m.alaghmandan@math.iut.ac.ir)
RASOUL NASR-ISFAHANI*
Affiliation:
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran (email: isfahani@cc.iut.ac.ir)
MEHDI NEMATI
Affiliation:
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran (email: m.nemati@math.iut.ac.ir)
*
For correspondence; e-mail: isfahani@cc.iut.ac.ir
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ℬ be an abstract Segal algebra with respect to 𝒜. For a nonzero character ϕ on 𝒜, we study ϕ-amenability, and ϕ-contractibility of 𝒜 and ℬ. We then apply these results to abstract Segal algebras related to locally compact groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Eymard, P., ‘L’algèbre de Fourier d’un groupe localement compact’, Bull. Soc. Math. France 92 (1964), 181236.CrossRefGoogle Scholar
[2]Hewitt, E. and Ross, K., Abstract Harmonic Analysis I, Die Grundlehren der Mathematischen Wissenschaften, 115 (Springer-Verlag, Berlin, 1963).Google Scholar
[3]Hewitt, E. and Ross, K., Abstract Harmonic Analysis II, Die Grundlehren der Mathematischen Wissenschaften, 152 (Springer-Verlag, New York, 1970).Google Scholar
[4]Hu, Z., Monfared, M. S. and Traynor, T., ‘On character amenable Banach algebras’, Studia Math. 193 (2009), 5378.CrossRefGoogle Scholar
[5]Johnson, B. E., ‘Weak amenability of group algebras’, Bull. London Math. Soc. 23 (1991), 281284.CrossRefGoogle Scholar
[6]Kaniuth, E., A Course in Commutative Banach Algebras (Springer, New York, 2009).CrossRefGoogle Scholar
[7]Kaniuth, E., Lau, A. T. and Pym, J., ‘On ϕ-amenability of Banach algebras’, Math. Proc. Cambridge Philos. Soc. 144 (2008), 8596.CrossRefGoogle Scholar
[8]Kaniuth, E., Lau, A. T. and Pym, J., ‘On character amenability of Banach algebras’, J. Math. Anal. Appl. 344 (2008), 942955.CrossRefGoogle Scholar
[9]Monfared, M. S., ‘Character amenability of Banach algebras’, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697706.CrossRefGoogle Scholar
[10]Reiter, H., L 1-algebras and Segal Algebras, Lecture Notes in Mathematics, 231 (Springer, Berlin, 1971).CrossRefGoogle Scholar
[11]Reiter, H. and Stegeman, J. D., Classical Harmonic Analysis and Locally Compact Groups (Clarendon Press, Oxford, 2000).CrossRefGoogle Scholar
[12]Runde, V., Lectures on Amenability (Springer, New York, 2002).CrossRefGoogle Scholar
[13]Samea, H., ‘Essential amenability of abstract Segal algebras’, Bull. Aust. Math. Soc. 79 (2009), 319325.CrossRefGoogle Scholar
[14]Tewari, U. B. and Parthasarathy, K., ‘A theorem on abstract Segal algebras over some commutative Banach algebras’, Bull. Aust. Math. Soc. 25 (1982), 293301.CrossRefGoogle Scholar