Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-15T05:38:48.411Z Has data issue: false hasContentIssue false

ON GENERALISED LEGENDRE MATRICES INVOLVING ROOTS OF UNITY OVER FINITE FIELDS

Published online by Cambridge University Press:  22 April 2024

NING-LIU WEI
Affiliation:
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu Province, PR China e-mail: weiningliu6@163.com
YU-BO LI
Affiliation:
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu Province, PR China e-mail: lybmath2022@163.com
HAI-LIANG WU*
Affiliation:
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu Province, PR China

Abstract

Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, Acta Arith. 115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting $a_1,\ldots ,a_{(q-1)/2}$ be all the nonzero squares in the finite field $\mathbb {F}_q$ containing q elements with $2\nmid q$, we give the explicit value of the determinant $D_{(q-1)/2}=\det [(a_i+a_j)^{(q-3)/2}]_{1\le i,j\le (q-1)/2}$. In particular, if $q=p$ is a prime greater than $3$, then

$$ \begin{align*}\bigg(\frac{\det D_{(p-1)/2}}{p}\bigg)= \begin{cases} 1 & \mbox{if}\ p\equiv1\pmod4,\\ (-1)^{(h(-p)+1)/2} & \mbox{if}\ p\equiv 3\pmod4\ \text{and}\ p>3, \end{cases}\end{align*} $$

where $(\frac {\cdot }{p})$ is the Legendre symbol and $h(-p)$ is the class number of $\mathbb {Q}(\sqrt {-p})$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the Natural Science Foundation of China (Grant No. 12101321).

References

Chapman, R., ‘Determinants of Legendre symbol matrices’, Acta Arith. 115 (2004), 231244.CrossRefGoogle Scholar
Chapman, R., ‘My evil determinant problem’, Online lecture notes, December 12, 2012. Available at http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/evildet.pdf.Google Scholar
Krachun, D., Petrov, F., Sun, Z.-W. and Vsemirnov, M., ‘On some determinants involving Jacobi symbols’, Finite Fields Appl. 64 (2020), Article no. 101672.CrossRefGoogle Scholar
Krattenthaler, C., ‘Advanced determinant calculus: a complement’, Linear Algebra Appl. 411 (2005), 68166.CrossRefGoogle Scholar
Li, Y.-B. and Wei, N.-L., ‘A variant of some cyclotomic matrices involving trinomial coefficients’, Colloq. Math. 174 (2023), 3743.CrossRefGoogle Scholar
Luo, X.-Q. and Sun, Z.-W., ‘Legendre symbols related to certain determinants’, Bull. Malays. Math. Sci. Soc. 46 (2023), Article no. 119.CrossRefGoogle Scholar
Mordell, L. J., ‘The congruence $\left(\left(p-1\right)/2\right)!\equiv \pm 1\;\left(\operatorname{mod}\;p\right)$ ’, Amer. Math. Monthly 68 (1961), 145146.CrossRefGoogle Scholar
Sun, Z.-W., ‘On some determinants with Legendre symbols entries’, Finite Fields Appl. 56 (2019), 285307.CrossRefGoogle Scholar
Vsemirnov, M., ‘On the evaluation of R. Chapman’s “evil determinant”’, Linear Algebra Appl. 436 (2012), 41014106.CrossRefGoogle Scholar
Vsemirnov, M., ‘On R. Chapman’s “evil determinant”: case $p\equiv 1\;\left(\operatorname{mod}\;4\right)$ ’, Acta Arith. 159 (2013), 331344.CrossRefGoogle Scholar
Wu, H.-L., ‘Elliptic curves over ${F}_p$ and determinants of Legendre matrices’, Finite Fields Appl. 76 (2021), Article no. 101929.CrossRefGoogle Scholar
Wu, H.-L., She, Y.-F. and Ni, H.-X., ‘A conjecture of Zhi-Wei Sun on determinants over finite fields’, Bull. Malays. Math. Sci. Soc. 45 (2022), 24052412.CrossRefGoogle Scholar
Wu, H.-L., She, Y.-F. and Wang, L.-Y., ‘Cyclotomic matrices and hypergeometric functions over finite fields’, Finite Fields Appl. 82 (2022), Article no. 102054.CrossRefGoogle Scholar
Wu, H.-L. and Wang, L.-Y., ‘Applications of circulant matrices to determinants involving $k$ th power residues’, Bull. Aust. Math. Soc. 106 (2022), 243253.CrossRefGoogle Scholar