Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-hr8xl Total loading time: 0.166 Render date: 2022-01-25T05:51:20.983Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

What Does it Take to Prove Fermat's Last Theorem? Grothendieck and the Logic of Number Theory

Published online by Cambridge University Press:  15 January 2014

Colin McLarty*
Affiliation:
Department of Philosophy, Case Western Reserve University, Cleveland, OH 44106, USA, E-mail: colin.mclarty@case.edu

Abstract

This paper explores the set theoretic assumptions used in the current published proof of Fermat's Last Theorem, how these assumptions figure in the methods Wiles uses, and the currently known prospects for a proof using weaker assumptions.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1972] Artin, M., Grothendieck, A., and Verdier, J.-L., Théorie des topos et cohomologie etale des schémas, Séminaire de Géométrie Algébrique du Bois-Marie, 4, Springer-Verlag, 1972, three volumes, generally refd as SGA 4.Google Scholar
[2003] Avigad, J., Number theory and elementary arithmetic, Philosophia Mathematica, vol. 11 (2003), pp. 257284.CrossRefGoogle Scholar
[2009] Basbois, N., La naissance de la cohomologie des groupes, Ph.D. thesis, Université de Nice Sophia-Antipolis, 2009.Google Scholar
[2008] Carter, J., Categories for the working mathematician: Making the impossible possible, Synthese, vol. 162 (2008), pp. 113.CrossRefGoogle Scholar
[1997] Cornell, G., Silverman, J., and Stevens, G. (editors), Modular forms and Fermat's Last Theorem, Springer-Verlag, 1997.CrossRefGoogle Scholar
[1974] Deligne, P., La conjecture de Weil I, Publications Mathématiques. Institut de Hautes Études Scientifiques, (1974), no. 43, pp. 273307.Google Scholar
[1977] Deligne, P. (editor), Cohomologie étale, 1977, Séminaire de Géométrie Algébrique du Bois-Marie; SGA 4 1/2, Springer-Verlag. Generally refd as SGA 4 1/2, this is not strictly a report on Grothendieck's Seminar.Google Scholar
[1998] Deligne, P., Quelques idées maîtresses de l'œuvre de A. Grothendieck, Matériaux pour l'histoire des mathématiques au XXe siècle (Nice, 1996), Société Mathématique de France, 1998, pp. 1119.Google Scholar
[2009] Deligne, P., Colloque Grothendieck, Pierre Deligne, video by IHES Science, on-line at www.dailymotion.com/us, 2009.Google Scholar
[1973] Deligne, P. and Rapoport, M., Les schémas de modules de courbes elliptiques, Modular functions of one variable, II, Lecture Notes in Mathematics, vol. 349, Springer-Verlag, New York, 1973, pp. 143316.CrossRefGoogle Scholar
[2008] Ellenberg, J., Arithmetic geometry, Princeton companion to mathematics (Gowers, T., Barrow-Green, J., and Leader, I., editors), Princeton University Press, 2008, pp. 372383.Google Scholar
[1983] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inventiones Mathematicae, vol. 73 (1983), pp. 349366.CrossRefGoogle Scholar
[2005] Fantechi, B., Vistoli, A., Gottsche, L., Kleiman, S. L., Illusie, L., and Nitsure, N., Fundamental algebraic geometry: Grothendieck's FGA explained, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, 2005.Google Scholar
[1964] Freyd, P., Abelian categories: An introduction to the theory of functors, Harper and Row, 1964, reprinted with author commentary in: Reprints in Theory and Applications of Categories , (2003), no. 3, pp. –25164, available on-line at www.emis.de/journals/TAC/reprints/articles/3/tr3abs.html.Google Scholar
[1957] Grothendieck, A., Sur quelques points d'algèbre homologique, Tôhoku Mathematical Journal, vol. 9 (1957), pp. 119221.Google Scholar
[1971] Grothendieck, A., Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois-Marie, 1, Springer-Verlag, 1971, generally refd as SGA1.Google Scholar
[1985] Grothendieck, A., Récoltes et semailles, Université des Sciences et Techniques du Languedoc, Montpellier, 1985, published in several successive volumes.Google Scholar
[1961] Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique III: Étude cohomologique des faisceaux cohérents, Publications Mathématiques. Institut des Hautes Études Scientifiques, Paris, (1961), no. 11.Google Scholar
[1971] Grothendieck, A., Éléments de géométrie algébrique I, Springer-Verlag, 1971.Google Scholar
[1966] Hartshorne, R., Residues and duality, lecture notes of a seminar on the work of A. Grothendieck given at Harvard 1963–64, Lecture Notes in Mathematics, no. 20, Springer-Verlag, New York, 1966.Google Scholar
[1977] Hartshorne, R., Algebraic geometry, Springer-Verlag, 1977.CrossRefGoogle Scholar
[1973] Herrlich, H. and Strecker, G., Category theory, Allyn and Bacon, Boston, 1973.Google Scholar
[2009] Lipman, J. and Hashimoto, M., Foundations of Grothendieck duality for diagrams of schemes, Springer-Verlag, 2009.CrossRefGoogle Scholar
[2009] Lurie, J., Higher topos theory, Annals of Mathematics Studies, no. 170, Princeton University Press, Princeton, 2009.Google Scholar
[1988] Lane, S. Mac, Group extensions for 45 years, Mathematical Intelligencer, vol. 10 (1988), no. 2, pp. 2935.CrossRefGoogle Scholar
[2003] Macintyre, A., Model theory: Geometrical and set-theoretic aspects and prospects, this Bulletin, vol. 9 (2003), no. 2, pp. 197212.Google Scholar
[forthcoming] Macintyre, A., The impact of Gödel's incompleteness theorems on mathematics, Horizons of truth: Proceedings of Gödel centenary, Vienna, 2006 , forthcoming.Google Scholar
[1977] Mazur, B., Modular curves and the Eisenstein ideal, Publications Mathématiques. Institut des Hautes Études Scientifiques, vol. 47 (1977), pp. 133186.Google Scholar
[1997] Mazur, B., Introduction to the deformation theory of Galois representations, Modular forms and Fermat's Last Theorem (Cornell, G., Silverman, J., and Stevens, S., editors), Springer-Verlag, 1997, pp. 243312.CrossRefGoogle Scholar
[2007] McLarty, C., The rising sea: Grothendieck on simplicity and generality I, Episodes in the history of recent algebra (Gray, J. and Parshall, K., editors), American Mathematical Society, 2007, pp. 301326.Google Scholar
[2008] McLarty, C., “There is no ontology here”: visual and structural geometry in arithmetic, The philosophy of mathematical practice (Mancosu, P., editor), Oxford University Press, 2008, pp. 370406.CrossRefGoogle Scholar
[1950] Mostowski, A., Some impredicative definitions in the axiomatic set theory, Fundamenta Mathematicae, vol. 37 (1950), pp. 111124.CrossRefGoogle Scholar
[1978] Mumford, D. and Tate, J., Fields Medals IV. An instinct for the key idea, Science, vol. 202 (1978), pp. 737739.CrossRefGoogle ScholarPubMed
[2008] Osserman, B., The Weil conjectures, Princeton companion to mathematics (Gowers, T., Barrow-Green, J., and Leader, I., editors), Princeton University Press, 2008, pp. 729732.Google Scholar
[1978] Takeuti, G., A conservative extension of Peano Arithmetic, Two applications of logic to mathematics, Princeton University Press, 1978, pp. 77135.Google Scholar
[2008] Totaro, B., Algebraic topology, Princeton companion to mathematics (Gowers, T., Barrow-Green, J., and Leader, I., editors), Princeton University Press, 2008, pp. 383396.Google Scholar
[1997] Washington, L., Galois cohomology, Modular forms and Fermat's Last Theorem (Cornell, G., Silverman, J., and Stevens, S., editors), Springer-Verlag, 1997, pp. 101120.CrossRefGoogle Scholar
[1995] Wiles, A., Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, vol. 141 (1995), pp. 443551.CrossRefGoogle Scholar
27
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

What Does it Take to Prove Fermat's Last Theorem? Grothendieck and the Logic of Number Theory
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

What Does it Take to Prove Fermat's Last Theorem? Grothendieck and the Logic of Number Theory
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

What Does it Take to Prove Fermat's Last Theorem? Grothendieck and the Logic of Number Theory
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *