Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-t4qhp Total loading time: 0.316 Render date: 2022-08-16T13:28:50.690Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Classification from a Computable Viewpoint

Published online by Cambridge University Press:  15 January 2014

Wesley Calvert
Affiliation:
Murray State University, Department of Mathematics and Statistics, Murray, Kentucky 42071, USAE-mail: wesley.calvert@murraystate.edu
Julia F. Knight
Affiliation:
University of Notre Dame, Department of Mathematics, Notre Dame, Indiana 46556, USAE-mail: Julia.F.Knight.1@nd.edu

Extract

Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we describe some recent work on classification in computable structure theory.

Section 1 gives some background from model theory and descriptive set theory. From model theory, we give sample structure and non-structure theorems for classes that include structures of arbitrary cardinality. We also describe the notion of Scott rank, which is useful in the more restricted setting of countable structures. From descriptive set theory, we describe the basic Polish space of structures for a fixed countable language with fixed countable universe. We give sample structure and non-structure theorems based on the complexity of the isomorphism relation, and on Borel embeddings.

Section 2 gives some background on computable structures. We describe three approaches to classification for these structures. The approaches are all equivalent. However, one approach, which involves calculating the complexity of the isomorphism relation, has turned out to be more productive than the others. Section 3 describes results on the isomorphism relation for a number of mathematically interesting classes—various kinds of groups and fields. In Section 4, we consider a setting similar to that in descriptive set theory. We describe an effective analogue of Borel embedding which allows us to make distinctions even among classes of finite structures. Section 5 gives results on computable structures of high Scott rank. Some of these results make use of computable embeddings. Finally, in Section 6, we mention some open problems and possible directions for future work.

Type
Articles
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
19
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Classification from a Computable Viewpoint
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Classification from a Computable Viewpoint
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Classification from a Computable Viewpoint
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *