Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T19:50:17.710Z Has data issue: false hasContentIssue false

Karyotype variations in Italian populations of the peach-potato aphid Myzus persicae (Hemiptera: Aphididae)

Published online by Cambridge University Press:  30 May 2012

M. Rivi
Affiliation:
Dipartimento di Scienze Agrarie e degli Alimenti, Università di Modena e Reggio Emilia, Reggio Emilia, Italy
V. Monti
Affiliation:
Dipartimento di Scienze Agrarie e degli Alimenti, Università di Modena e Reggio Emilia, Reggio Emilia, Italy Dipartimento di Biologia, Università di Modena e Reggio Emilia, Modena, Italy
E. Mazzoni
Affiliation:
Istituto di Entomologia e Patologia vegetale, Università Cattolica del Sacro Cuore, Piacenza, Italy
S. Cassanelli
Affiliation:
Dipartimento di Scienze Agrarie e degli Alimenti, Università di Modena e Reggio Emilia, Reggio Emilia, Italy
M. Panini
Affiliation:
Istituto di Entomologia e Patologia vegetale, Università Cattolica del Sacro Cuore, Piacenza, Italy
D. Bizzaro
Affiliation:
Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
M. Mandrioli
Affiliation:
Dipartimento di Biologia, Università di Modena e Reggio Emilia, Modena, Italy
G.C. Manicardi*
Affiliation:
Dipartimento di Scienze Agrarie e degli Alimenti, Università di Modena e Reggio Emilia, Reggio Emilia, Italy
*
*Author for correspondence Fax:+39-0522-522027 E-mail: giancarlo.manicardi@unimore.it

Abstract

In this study, we present cytogenetic data regarding 66 Myzus persicae strains collected in different regions of Italy. Together with the most common 2n = 12 karyotype, the results showed different chromosomal rearrangements: 2n = 12 with A1–3 reciprocal translocation, 2n = 13 with A1–3 reciprocal translocation and A3 fission, 2n = 13 with A3 fission, 2n = 13 with A4 fission, 2n = 14 with X and A3 fissions. A 2n = 12–13 chromosomal mosaicism has also been observed. Chromosomal aberrations (and in particular all strains showing A1–3 reciprocal translocation) are especially frequent in strains collected on tobacco plants, and we suggest that a clastogenic effect of nicotine, further benefited by the holocentric nature of aphid chromosomes, could be at the basis of the observed phenomenon.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arabi, M. (2004) Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa. Andrologia 36, 305310.CrossRefGoogle ScholarPubMed
Becker, T.S. & Lenhard, B. (2007) The random versus fragile breakage models of chromosome evolution: a matter of resolution. Molecular Genetics and Genomics 278, 487491.Google Scholar
Blackman, R.L. (1971) Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz.). Bulletin of Entomological Research 60, 533546.Google Scholar
Blackman, R.L. (1980) Chromosome numbers in the Aphididae and their taxonomic significance. Systematic Entomology 5, 725.Google Scholar
Blackman, R.L. (1987) Morphological discrimination of a tobacco-feeding form from Myzus persicae (Sulzer) (Hemiptera: Aphididae), and a key to new world Myzus (Nectarosiphon) species. Bulletin of Entomological Research 77, 713730.Google Scholar
Blackman, R.L., Takada, H. & Kawakami, K. (1978) Chromosomal rearrangement involved in insecticide resistance of Myzus persicae. Nature 271, 450452.Google Scholar
Blackman, R.L., Spence, J.M., Field, L.M. & Devonshire, A.L. (1995) Chromosomal location of the amplified esterase genes conferring resistance to insecticides in Myzus persicae (Homoptera: Aphididae). Heredity 75, 297302.Google Scholar
Blackman, R.L., Malarky, G. & Margaritopoulos, J.T. (2007) Distribution of common genotypes of Myzus persicae (Hemiptera: Aphididae) in Greece, in relation to life cycle and host plant. Bulletin of Entomological Research 97, 253263.Google Scholar
Brown, P.A. & Blackman, R.L. (1988) Karyotype variation in the corn leaf aphid, Rhopalosiphum maidis (Fitch), species complex (Hemiptera: Aphididae) in relation to host-plant and morphology. Bulletin of Entomological Research 78, 351363.Google Scholar
Caceres, M., Ranz, J.M., Barbadilla, A., Long, M. & Ruiz, A. (1999) Generation of a widespread Drosophila inversion by a transposable element. Science 285, 415418.Google Scholar
Carlton, J.M., Angiuoli, S.V., Suh, B.B., Kooij, T.W., Pertea, M., Silva, J.C., Ermolaeva, M.D., Allen, J.E., Selengut, J.D., Koo, H.L., Peterson, J.D., Pop, M., Kosack, D.S., Shumway, M.F., Bidwell, S.L., Shallom, S.J., van Aken, S.E., Riedmuller, S.B., Feldblyum, T.V., Cho, J.K., Quackenbush, J., Sedegah, M., Shoaibi, A., Cummings, L.M., Florens, L., Yates, J.R., Raine, J.D., Sinden, R.E., Harris, M.A., Cunningham, D.A., Preiser, P.R., Bergman, L.W., Vaidya, A.B., van Lin, L.H., Janse, C.J., Waters, A.P., Smith, H.O., White, O.R., Salzberg, S.L., Venter, J.C., Fraser, C.M., Hoffman, S.L., Gardner, M.J. & Carucci, D.J. (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419, 512519.Google Scholar
Clements, K.M., Sorenson, C.E., Wiegmann, B.M., Neese, P.A. & Roe, R.M. (2000) Genetic, biochemical, and behavioural uniformity among populations of Myzus nicotianae and Myzus persicae. Entomologia Experimentalis et Applicata 95, 269281.Google Scholar
Coghlan, A. & Wolfe, K.H. (2002) Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Research 12, 857867.Google Scholar
Crema, R. (1979) Egg viability and sex determination in Megoura viciae (Homoptera: Aphididae). Entomologia Experimentalis et Applicata 26, 152156.CrossRefGoogle Scholar
De, S. (2011) Somatic mosaicism in healthy human tissues. Trends in Genetics 27, 217223.Google Scholar
Devonshire, A.L., Devine, G.J. & Moores, G.D. (1992) Comparison of microplate esterase assays and immunoassay for identifying insecticide resistant variants of Myzus persicae (Homoptera: Aphididae). Bulletin of Entomological Research 82, 459463.Google Scholar
ffrench-Constant, R.H., Byrne, F.J., Stribley, M.F. & Devonshire, A.L. (1988) Rapid identification of the recently recognised Myzus antirrhinii (Macchiati) (Hemiptera: Aphididae) by polyacrylamide gel electrophoresis. Entomologist 107, 2023.Google Scholar
Field, L.M., Javed, N., Stribley, M.F. & Devonshire, A.L. (1994) The peach-potato aphid Myzus persicae and the tobacco aphid Myzus nicotianae have the same esterase-based mechanisms of insecticide resistance. Insect Molecular Biology 3, 143148.Google Scholar
Fraguedakis-Tsolis, S., Hauffe, H.C. & Searle, J.B. (1997) Genetic distinctiveness of a village population of house mice: Relevance to speciation and chromosomal evolution. Proceedings of the Royal Society of London, Series B: Biological Science 264, 355360.Google Scholar
Freudenreich, C.H. (2005) Molecular mechanisms of chromosome fragility. ChemTracks-Biochemistry and Molecular Biology 18, 141152.Google Scholar
Hales, D.F. (1989) The chromosomes of Schoutedenia lutea (Homoptera, Aphidoidea, Greenideinae), with an account of meiosis in the male. Chromosoma 98, 295300.Google Scholar
Hales, D.F., Tomiuk, J., Wohrmann, K. & Sunnucks, P. (1997) Evolutionary and genetic aspects of aphid biology: A review. European Journal of Entomology 94, 155.Google Scholar
Howell, W.M. & Black, D.A. (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36, 10141015.Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241254.Google Scholar
Lauritzen, M. (1982) Q-Band and G-Band Identification of 2 chromosomal rearrangements in peach-potato aphids, Myzus persicae (Sulzer), resistant to insecticides. Hereditas 97, 95102.Google Scholar
Manicardi, G.C., Mandrioli, M., Bizzaro, D. & Bianchi, U. (2002) Cytogenetic and molecular analysis of heterochromatic areas in the holocentric chromosomes of different aphid species. pp. 4756in Sobti, R.C., Obe, G. & Athwal, R.S. (Eds), Some Aspects of Chromosome Structure and Functions. New Delhi, India, Narosa Publishing House.Google Scholar
Kephalogianni, T.E., Tsitsipis, J.A. & Margaritopoulos, J.T. (2002) Variation in the life cycle and morphology of the tobacco host-race of Myzus persicae (Hemiptera: Aphididae) in relation to its geographical distribution. Bulletin of Entomological Research 92, 301307.Google Scholar
Loxdale, H.D. & Lushai, G. (2003) Rapid changes in clonal lines: the death of a 'sacred cow'. Biological Journal of the Linnean Society 79, 316.Google Scholar
Margaritopoulos, J.T., Blackman, R.L. & Tsitsipis, J.A. (2003) Co-existence of different host-adapted forms of the Myzus persicae group (Hemiptera: Aphididae) in southern Italy. Bulletin of Entomological Research 93, 131135.CrossRefGoogle ScholarPubMed
Monti, V., Giusti, M., Bizzaro, D., Manicardi, G.C. & Mandrioli, M. (2011) Presence of a functional (TTAGG)n telomere-telomerase system in aphids. Chromosome Research 19, 625633.Google Scholar
Monti, V., Mandrioli, M., Rivi, M. & Manicardi, G.C. (2012) The vanishing clone: karyotypic evidence for extensive intraclonal genetic variation in the peach potato aphid, Myzus persicae (Hemiptera: Aphididae). Biological Journal of the Linnean Society 105, 350358.Google Scholar
Renciuk, D., Kypr, J. & Vorlickova, M. (2011) CGG Repeats associated with fragile X chromosome form left-handed Z-DNA structure. Biopolymers 95, 174181.Google Scholar
Richards, R. (2001) Fragile and unstable chromosomes in cancer: causes and consequences. Trends in Genetics 17, 339345.Google Scholar
Rivi, M., Mazzoni, E., Criniti, A., Cassanelli, S., Bizzaro, D. & Manicardi, G.C. (2009) Relationship between chromosomal translocation and FE4 gene amplification in an Italian population of the peach-potato aphid Myzus persicae (Hemiptera: Aphididae). Redia 92, 229231.Google Scholar
Sassen, A., Richter, E., Semmler, M., Harreus, U., Gamarra, F. & Kleinsasser, N. (2005) Genotoxicity of nicotine in mini-organ cultures of human upper aerodigestive tract epithelia RID A-3601-2008. Toxicological Sciences 88, 134141.CrossRefGoogle Scholar
Sen, S., Sharma, A. & Talukder, G. (1991) Inhibition of clastogenic effects of nicotine by chlorophyllin in mice bone-marrow cells in vivo. Phytotherapy Research 5, 130133.CrossRefGoogle Scholar
Spence, J.M. & Blackman, R.L. (1998) Chromosomal rearrangements in the Myzus persicae group and their evolutionary significance. pp. 113118in Nieto Nafría, J.M. & Dixon, A.F.G. (Eds) Chromosomal Rearrangements in the Myzus persicae Group and their Evolutionary Significance. León, Spain, Universidad De León Secretariado de Publicacions.Google Scholar
Spence, J.M. & Blackman, R.L. (2000) Inheritance and meiotic behaviour of a de novo chromosome fusion in the aphid Myzus persicae (Sulzer). Chromosoma 109, 490497.Google Scholar
Trivedi, A.H., Dave, B.J. & Adhvaryu, S.G. (1990) Assessment of genotoxicity of nicotine employing in vitro mammalian test system. Cancer Letters 54, 8994.Google Scholar
Trivedi, A.H., Dave, B.J. & Adhvaryu, S.G. (1993) Genotoxic effects of tobacco extract on Chinese hamster ovary cells. Cancer Letters 70, 107112.Google Scholar
White, M.J.D. (1973) Animal Cytology and Evolution. Cambridge, UK, Cambridge University Press.Google Scholar
Wrensch, D.L., Ketheley, J.B. & Norton, R.A. (1994) Cytogenetic of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites with generalization on eukaryotes. pp. 282343in Houck, M.A. (Ed.), Mites: Ecological and Evolutionary Analysis of Life-History Patterns. New York, USA, Chapman & Hall.Google Scholar
Yang, X.W. & Zhang, X. (2000) Karyotype polymorphism in different geographic populations of green peach aphid Myzus persicae (Sulzer) in China. Entomologia Sinica 7, 2935.Google Scholar