Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-26T06:23:59.810Z Has data issue: false hasContentIssue false

Identification and characterization of ace1-type acetylcholinesterase in insecticide-resistant and -susceptible Propylaea japonica (Thunberg)

Published online by Cambridge University Press:  27 July 2017

M.M. Wang
Affiliation:
Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
L.Y. Xing
Affiliation:
Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
Z.W. Ni
Affiliation:
Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
G. Wu*
Affiliation:
Key Laboratory of Biopesticides and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
*
*Author for correspondence: Fax: +86 059183789460 Tel: +86 059183769631 E-mail: newugang@163com

Abstract

Characterization and gene cloning of acetylecholinesterase (AChE) in the insecticide-resistant (R) and -susceptible (S) insects have been reported in the past. However, the studies focused mostly on herbivorous pests, rather than predacious species, such as ladybird beetles. Using R and S Propylaea japonica (thunberg), a full-length cDNA sequence (2928 bp) of the ace1-type AChE gene was determined for the first time. The ace1 encoding a protein of 645 amino acids contained typical conserved motifs, such as FGESAG domains, catalytic triad, acyl pocket, oxyanino hole, choline binding site, peripheral anionic site, omega loop and conserved aromatic residues. R P. japonica displayed 50-times greater resistance to chlorpyrifos or mathamidophos with a significantly lower AChE sensitivity to paraoxon, malaoxon, chlorpyrifos or methamidophos than its S counterpart. Five amino acids in the ace1 of R P. japonica differed from those found in S P. japonica. One of them, F358S, located in the acyl-binding pocket, might play a crucial role in the resistance of the insect to organophosphates (OPs). Whereas, K493E and I538V, which were close to some of the conserved aromatic amino acids (i.e., H509, Y511, and W499) in the gorge, and G571R and T576A near C593 that formed the disulfide bonds with C471, might also involve in the change of insecticide resistance in P. japonica. AChE insensitivity and amino acid replacements, particularly F358S, might be the determining factors in the alteration of OPs-resistance in P. japonica.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Doghairi, M.A., AL-Rehiayani, S., Osman, K.A. & Elhag, E.A. (2004) Residual effects of some conventional and biorational pesticides on ladybird beetle, Adonia variegata Goeze, Pakistan. Journal of Biological Science 7, 130133.Google Scholar
Aldridge, W.N. (1950) Some properties of specific cholinesterase with particular reference to mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E605) and analogues. Biochemical Journal 46, 451460.CrossRefGoogle Scholar
Alout, H., Berthomieu, A., Hadjivassilis, A. & Weill, M. (2007) A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochemistry and Molecular Biology 37, 4147.Google Scholar
Charpentier, A. & Fournier, D. (2001) Levels of total acetylecholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pesticide Biochemistry and Physiology 70, 100107.CrossRefGoogle Scholar
Chen, G. & Wu, G. (2005) Resistance to seven insecticides and analysis of enzymatic characteristics in Lipaphis erysimi (Homoptera: Aphididae) in Fuzhou, China. Journal of Fujian Agriculture and Forestry University, China 34, 204207.Google Scholar
Chen, Z., Newcomb, R., Forbes, E., McKenzie, J. & Batterham, P. (2001) The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly,Lucilia cuprina . Insect Biochemistry and Molecular Biology 31, 805816.Google Scholar
Croft, B.A. & Strikler, K. (1983) Natural enemy resistance to pesticides: documentation, characterization, theory and application. pp. 669702 in Georghiou, G.P. & Saito, T. (Eds) Pest Resistance to Pesticides. New York, Plenum.Google Scholar
Duan, J.J., Head, G., McKee, M.J., Nickson, T.N., Martin, J.W. & Sayegh, F.S. (2002) Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bb1 protein on a non-target ladybird beetle, Coleomegilla maculata . Entomologia Experimentalis et Applicata 104, 271280.Google Scholar
Essandoh, J.; Yawson, A.E. & Weetman, D. (2013) Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malaria Journal 12, 404.CrossRefGoogle ScholarPubMed
Fournie, D. & Mutéro, A. (1994) Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comparative Biochemistry and Physiology 108C, 1931.Google Scholar
Gao, J.R. & Zhu, K.Y. (2002) Increased expression of an acetylecholinesterase gene may confer organophosphate resistance in the greenbug Schizaphis graminum (Homoptera: Aphididae). Pesticide Biochemistry and Physiology 73, 164173.CrossRefGoogle Scholar
Harel, M., Kryger, G., Rosenberry, R., Mallender, W., Lewis, T., Fletcher, R., Guss, J.M., Silman, I. & Sussman, J.L. (2000) Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science 9, 10631072.Google Scholar
Huchard, E., Martinez, M., Alout, H., Douzery, E.J.P., Lutfalla, G., Berthomieu, A., Berticat, C., Raymond, M. & Weill, M. (2006) Acetylcholinesterase genes within the Diptera: takeover and loss in true flies. Proceedings of the Royal Society of London Series B 273, 25952604.Google Scholar
James, D.G. (2003) Pesticide susceptibility of two coccinellids (Stethorus punctum picipes and Harmonia axyridis) important in biological control of mites and aphids in Washington Hops. Biocontrol Science and Technology 13, 253259.Google Scholar
Javed, N., Viner, R., Williamson, M.S., Field, L.M., Devonshire, A.L. & Moores, G.D. (2003) Characterization of acetylecholinesterase, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood). Inset Molecular Biology 12, 613620.Google Scholar
Jiang, J.J., Zhou, K., Liang, G.W., Zeng, L. & Wen, S.Y. (2014) A novel point mutation of acetylcholinesterase in a trichlorfon-resistant strain of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). Applied Entomology and Zoology 49, 129137.Google Scholar
Kim, Y.H. & Lee, S.H. (2013) Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? Insect Molecular Biology 43, 4753.CrossRefGoogle ScholarPubMed
Kumral, N.A., Gencer, N.S., Susurluk, H. & Yalcin, C. (2011) A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities in Stethorus gilvifrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina: Tetranychidae). International Journal of Acarology 37, 255268.CrossRefGoogle Scholar
Kwon, D.H., Clark, J.M. & Lee, S.H. (2010) Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two-spotted spider mite. Insect Molecular Biology 19, 195204.Google Scholar
Kwon, D.H., Min, S., Lee, S.W., JPark, J.H. & Lee, S.H. (2012) Monitoring of carbamate and organophosphate resistance levels in Nilaparvata lugens based on bioassay and quantitative sequencing. Journal of Asia-Pacific Entomology 15, 635639.Google Scholar
Lang, G.J., Zhu, K.Y. & Zhang, C.X. (2012) Can acetylcholinesterase serve as a target for developing more selective insecticides? Current Drug Targets 13, 495501.Google Scholar
Lee, S.H., Kim, Y.H., Kwon, D.H., Cha, D.J. & Kim, J.H. (2015) Mutation and duplication of arthropod acetylcholinesterase: implications for pesticide resistance and tolerance. Pesticide Biochemistry and Physiology 20, 118124.CrossRefGoogle Scholar
Li, B.L., Chen, W., Liu, L., Zhang, X.C., Bao, Y.Y., Cheng, J.A., Zhu, Z.R. & Zhang, C.X. (2012) Molecular characterization of two acetylcholinesterase genes from the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pesticide Biochemistry and Physiology 102, 198203.Google Scholar
Li, P., Chen, Q.Z. & Liu, T.X. (2015) Effects of a juvenile hormone analog, pyriproxyfen, on Serangium japonicum (Coleoptera: Coccinellidae), a predator of Bemisia tabaci (Hemiptera: Aleyrodidae). Biological Control 86, 713.Google Scholar
Malekmohammadi, M., Hejazi, M.J., Mossadegh, M.S., Galehdari, H., Khanjani, M. & Goodarzi, M.T. (2012) Molecular diagnostic for detecting the acetylcholinesterase mutations in insecticide-resistant populations of Colorado potato beetle, Leptinotarsa decemlineata (Say). Pesticide Biochemistry and Physiology 104, 150156.Google Scholar
Menozzi, P., Shi, M.A., Lougarre, A., Tang, Z.H. & Fournier, D. (2004) Mutations of acetylecholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutional Biology 4, 4.Google Scholar
Miyata, T. & Wu, G. (2010) Studies on diamondback moth (Plutella xylostella (L.)) resistance to insecticides: past, present and future. Journal of Pesticide Science 35, 555561.CrossRefGoogle Scholar
Mutero, A., Pralavorio, M., Bride, J.M., & Fournier, D. (1994) Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. PNAS USA 91, 59225926.CrossRefGoogle ScholarPubMed
Nabeshima, T., Mori, A., Kozaki, T., Iwata, Y., Hidoh, O., Harada, S., Kasai, S., Severson, D.W., Kono, Y. & Tomita, T. (2004) An amino acid substitution attributable to insecticide- insensitivity of acetylecholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus . Biochemical and Biophysical Research Communications 313, 794801.Google Scholar
Obrycki, J.J. & Kring, T.J. (1998) Predacious coccinellidae in biological control. Annual Review of Entomology 43, 295321.Google Scholar
Ramoutar, D., Cowles, R.S. & Alm, S.R. (2009) Pyrethroid resistance mediated by enzyme detoxification in Listronotus maculicollis (Coleoptera: Curculionidae) from Connecticut. Journal of Economic Entomology 102, 12031208.CrossRefGoogle ScholarPubMed
Ren, X., Han, Z. & Wang, Y. (2002) Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hübner). Archives of Insect Biochemistry and Physiology 51, 103110.Google Scholar
Revuelta, L., Piulachs, M.D., Bellés, X., Castañera, P., Ortego, F., Díaz-Ruíz, J.R., Hernández-Crespo, P. & Tenllado, F. (2009) RNAi of ace1 and ace2 in Blattella germanica reveals their differential contribution to acetylcholinesterase activity and sensitivity to insecticides. Insect Biochemistry and Molecular Biology 39, 913919.Google Scholar
Revuelta, L., Ortego, F., Díaz-Ruíz, J.R., Castañera, P., Tenllado, F. & Hernández-Crespo, P. (2011) Contribution of Ldace1 gene to acetylcholinesterase activity in Colorado potato beetle. Insect Biochemistry and Molecular Biology 41, 795803.CrossRefGoogle ScholarPubMed
Shi, M.A., Lougarre, A., Alies, C., Frémaux, I., Tang, Z.H., Stojan, J. & Fournier, D. (2004) Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evolutionary Biology 4, 5.Google Scholar
Sonoda, S., Shi, X.Y., Song, D., Liang, P., Gao, X.W., Zhang, Y., Liu, Y., Matsumura, M., Sanada-Morimura, S., Minakuchi, C., Tanaka, T. & Miyata, T. (2014) Duplication of acetylcholinesterase gene in diamondback moth strains with different sensitivities to acephate. Insect Biochemistry and Molecular Biology 48, 8390.Google Scholar
Tang, Q.Y. & Feng, M.G. (1997) pp. 188195 in Tang, Q.Y. & Feng, M.G. (Eds) Practical Statistics and DPS Data Processing System. Beijing, China, China Agricultural Press.Google Scholar
Tang, L.D., Wang, X.M., Jin, F.L., Qiu, B.L., Wu, J.H. & Ren, S.X. (2014) De novo sequencing-based transcriptome and digital gene expression analysis reveals insecticide resistance-relevant genes in Propylaea japonica (Thunberg) (Coleoptea: Coccinellidae). Plos ONE 9, e100946. doi:10.1371/journal.pone.0100946.Google Scholar
Taylor, P. & Radic, Z. (1994) The Cholinesterases: from genes to proteins. Annual Review of Pharmacology and Toxicology 34, 281320.CrossRefGoogle ScholarPubMed
Toda, S., Komazaki, S., Tomita, T. & Kono, Y. (2004) Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophos- phorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Insect Molecular Biology 13, 549553.Google Scholar
Torres, J.B., Rodrigues, A.R.S., Barros, E.M. & Santos, D.S. (2015) Lambda-cyhalothrin resistance in the lady beetle Eriopis connexa (Coleoptera: Coccinellidae) confers tolerance to other pyrethroids. Journal of Economic Entomology 108, 6068.Google Scholar
Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest Tribolium castaneum . Nature 452, 949955.Google Scholar
Vaughan, A., Rocheleau, T. & Ffrench-Constant, R. (1997) Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity. Experimental Parasitology 87, 237244.Google Scholar
Verma, A., Wong, D.M., Islam, R., Tong, F. & Ghavami, M. (2015) 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae . Bioorganic and Medicinal Chemistry 23, 13211340.Google Scholar
Vontas, J.G., Hejazi, M.J., Hawkes, N.J., Cosmidis, N., Loukas, M. & Hemingway, J. (2002) Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae . Insect Molecular Biology 11, 329336.CrossRefGoogle ScholarPubMed
Walsh, S.B., Dolden, T.A., Moores, G.D., Kristensen, M., Lewis, T., Devonshire, A.L. & Williamson, M.S. (2001) Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochemical Journal 359, 175181.Google Scholar
Wang, J.M., Wang, B.B., Xie, Y., Sun, S.S., Gu, Z.Y., Ma, L., Li, F.C., Zhao, Y.F., Yang, B., Shen, W.D. & Li, B. (2014) Functional study on the mutations in the silkworm (Bombyx mori) acetylcholinesterase type 1 gene (ace1) and its recombinant proteins. Molecular Biology Reports 41, 429437.Google Scholar
Wu, G. & Miyata, T. (2005) Susceptibilities to methamidophos and enzymatic characteristics in 18 species of pest insects and their natural enemies in crucifer vegetable crops. Pesticide Biochemistry and Physiology 82, 7993.Google Scholar
Wu, G., Kang, C.Y., Miyata, T. & Xie, L.H. (2007) Insecticide toxicity and synergism by enzyme inhibitions in 18 species of pest insects and natural enemies in crucifer vegetable crops. Pest Management Science 63, 500510.CrossRefGoogle ScholarPubMed
Youn, Y.N., Seo, M.J., Shin, G.J., Jang, C. & Yu, Y.M. (2003) Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control 28, 164170.Google Scholar
Yu, C.H., Fu, M.R., Lin, R.H., Zhang, Y., Liu, Y.Q., Jiang, H. & Brock, T.C.M. (2014) Toxic effects of hexaflumuron on the development of Coccinella septempunctata . Environmental Science and Pollution Research 21, 14181424.Google Scholar
Zhang, Y.H., Jiang, R.X., Wu, H.S., Liu, P., Xie, J.Q., He, Y.Y. & Pang, H. (2012) Next-generation sequencing-based transcriptome analysis of Cryptolaemus montrouzieri under insecticide stress reveals resistance-relevant genes in ladybirds. Genomics 100, 3541.CrossRefGoogle ScholarPubMed
Zhang, Y.L., Shuo, L.i., Xu, L., Guo, H.F., Zi, J.Y., Wang, L.H., He, P. & Fang, J.C. (2013) Overexpression of carboxylesterase-1 and mutation (F439H) of acetylcholinesterase-1 are associated with chlorpyrifos resistance in Laodelphax striatellus . Pesticide Biochemistry and Physiology 106, 813.Google Scholar
Zhao, H., Tang, L., Hu, M.Y., Geng, P. & An, GD. (2012) Research progresses on pesticides resistance of predatory mites. Chinese Journal of Biological Control 28, 282288.Google Scholar
Zhu, K.Y. & Clark, J.M. (1995) Comparisons of kinetic properties of acetylcholinesterase purified from azinphosmethys-susceptible and resistant strains of Colorado potato bettle. Pesticide Biochemistry and Physiology 51, 5767.CrossRefGoogle Scholar
Zhu, K.Y., Lee, S.H. & Clark, J.M. (1996) A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochemistry and Physiology 55, 100108.Google Scholar
Zhuang, H.M., Li, C.W. & Wu, G. (2014) Identification and characterization of ace2-type acetylcholinesterase in insecticide-resistant and -susceptible parasitoid wasp Oomyzus sokolowskii (Hymenoptera: Eulophidae). Molecular Biology Reports 41, 75257534.Google Scholar
Supplementary material: File

Wang supplementary material

Supplementary Figure

Download Wang supplementary material(File)
File 431.5 KB