Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-28T11:22:01.195Z Has data issue: false hasContentIssue false

Diversity, distribution and parasitism rates of fleas (Insecta: Siphonaptera) on sigmodontine rodents (Cricetidae) from Argentinian Patagonia

Published online by Cambridge University Press:  18 April 2018

J. Sanchez*
Affiliation:
Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires – CITNOBA (CONICET-UNNOBA), Ruta Provincial 32 Km 3,5, 2700 Pergamino, Argentina
M. Lareschi
Affiliation:
Centro de Estudios Parasitológicos y de Vectores, CEPAVE (CCT La Plata-CONICET-UNLP), Bv. 120 s/n e/ 60 y 61, 1900 La Plata, Argentina
*
*Author for correspondence Phone: +54 2477 409500 int. 22010 E-mail: julianasanchez@unnoba.edu.ar

Abstract

Fleas have great medical relevance as vectors of the causative agents of several diseases in animals and humans and rodents are the principal reservoirs for these pathogens. Argentinian Patagonia has the highest diversity of rodent fleas in South America. However, parasitism rates of rodents by fleas, the factors that influence them and the ecological aspects that modulate geographical distributions of flea–host association remain unknown for this region. This is the first study to record the diversity, prevalence, abundance, geographical distributions and host ranges of fleas in Argentinian Patagonia. It also compares parasitism rates among Patagonian ecoregions and host species. We captured 438 rodents belonging to 13 species, which harboured 624 fleas from 11 species and subspecies (P = 46%; mean abundance = 1.44). The high parasitism rates obtained were consistent with previous records for other arid regions, suggesting that Patagonia favours the survival and development of Siphonaptera. Host geographic range and abundance were related to the parasitological indexes: host species with high-density populations had the highest mean flea abundance and prevalence, whereas widely distributed hosts had the highest richness and diversity of flea species. Our results contribute to the knowledge of the flea–host–environment complex. Our analysis of flea distributions and parasitism rate in Central Patagonia may be useful in epidemiological studies of flea-borne diseases and provide a basis for implementing surveillance systems for better risk assessment of emerging zoonoses in the region.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, R. & Fernández, J.A. (2015) Flea diversity and prevalence on arid-adapted rodents in the Orient Basin, Mexico. Revista Mexicana de Biodiversidad 86, 981988.Google Scholar
Bazán-León, E.A., Lareschi, M., Sanchez, J., Soto-Nilo, G., Lazzoni, I., Venegas, C.I., Poblete, Y. & Vásquez, R.A. (2013) Fleas associated with non-flying small mammal communities from northern and central Chile: with new host and locality records. Medical and Veterinary Entomology 27, 450459.Google Scholar
Beaucournu, J.C., Moreno, L. & González-Acuña, D. (2014) Fleas (Insecta-Siphonaptera) of Chile: a review. Zootaxa 3900(2), 151203.Google Scholar
Begon, M., Harper, J.L. & Towsend, C.R. (1988) Ecología: Individuos, Poblaciones y Comunidades. Barcelona, Omega.Google Scholar
Beldoménico, P.M. (2007) Infection and host population dynamics: the use and assessment of generic indices of health. PhD Thesis, University of Liverpool.Google Scholar
Bitam, I., Dittmar, K., Parola, P., Whiting, M.F. & Raoult, D. (2010) Fleas and flea borne diseases. International Journal of Infectious Diseases 14, 667676.Google Scholar
Blank, S.M., Kutzscher, C., Masello, J.F., Pilgrin, R.L.C. & Quillfeldt, P. (2007) Stick-tight fleas in the nostrils and below the tongue: evolution of an extraordinary infestation site in Hectopsylla (Siphonaptera: Pulicidae). Zoological Journal of the Linnean Society 149, 117137.Google Scholar
Burkart, R., Bárbaro, N., Sánchez, R. & Gómez, D. (1999) Eco-regiones de la Argentina. Administración de Parques Nacionales. Buenos Aires, Argentina, Programa de Desarrollo Institucional Ambiental.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M., Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83, 575583.Google Scholar
Eisen, R.J. & Gage, K.L. (2012) Transmission of flea-borne zoonotic agents. Annual Review Entomology 57, 6182.Google Scholar
Eisen, R.J., Eisen, L. & Gage, K.L. (2009). Studies of vector competency and efficiency of North American fleas for Yersinia pestis: state of the field and future research needs. Journal of Medical Entomology 46, 737744.Google Scholar
Hopkins, G.H. & Rothschild, M. (1953) An Illustrated Catalogue of Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History), Vol. I. British Museum, NH, London, Tungidae and Pulicidae.Google Scholar
Hopkins, G.H. & Rothschild, M. (1956) An Illustrated Catalogue of Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History), Vol. II. Coptopsyllidae, Vermipsyllidae, Stephanocircidae, Ischnopsyllidae, Hypsophthalmidae and Xiphiopsyllidae. NH, London, British Museum.Google Scholar
Hopkins, G.H. & Rothschild, M. (1962) An Illustrated Catalogue of Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History), Vol. III. Hystrichopsyllidae (Acedestiinae, Anomiopsyllinae, Hystrichopsyllinae, Neopsyllinae, Rhadinopsyllinae and Stenoponiinae). NH, London, British Museum.Google Scholar
Hopkins, G.H. & Rothschild, M. (1966) An Illustrated Catalogue of Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History), Vol. IV. Hystrichopsyllidae (Ctenophthalminae, Dinopsyllinae; Doratopsyllinae and Listropsyllinae). NH, London, British Museum.Google Scholar
Johnson, P.T. (1957) A Classification of the Siphonaptera of South America with Descriptions of New Species. Washington, DC, Memoirs of the Entomological Society of Washington.Google Scholar
Krasnov, B.R. (2008) Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge, Cambridge University Press.Google Scholar
Krasnov, B.R., Shenbront, G.I., Khokhova, I.S. & Degen, A.A. (2004) Flea species richness and parameters of host body, host geography and host ‘milieu’. Journal of Animal Ecology 73, 11211128.Google Scholar
Krasnov, B.R., Poulin, R. & Morand, S. (2006 a) Patterns of macroparasite diversity in small mammals. pp. 198231 in Morand, S., Krasnov, B.R. & Poulin, R. (Eds) Micromammals and Macroparasites from Evolutionary Ecology to Management. Tokyo, Springer.Google Scholar
Krasnov, B.R., Stanko, M., Khokhlova, I.S., Miklisova, D., Morand, S., Shenbront, G.I. & Poulin, R. (2006 b) Relationships between local and regional species richness in flea communities of small mammalian hosts: saturation and spatial scale. Parasitology Research 98, 403413.Google Scholar
Krasnov, B.R., Shenbront, G.I., Khokhova, I.S. & Poulin, R. (2007) Geographic variation in the ‘bottom-up’ control of diversity: fleas and their small mammalian hosts. Global Ecology and Biogeography 16, 179186.Google Scholar
Krasnov, B.R., Mouillot, D., Khokhova, I.S., Shenbront, G.I. & Poulin, R. (2012) Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology 139, 338347.Google Scholar
Lareschi, M. & Krasnov, B.R. (2010) Determinants of ectoparasites assemblage structure on rodent hosts from South American marshlands: the effect of host species, locality and season. Medical and Veterinary Entomology 24, 284292.Google Scholar
Lareschi, M., Ojeda, R. & Linardi, P.M. (2004) Flea parasites of small mammals in the Monte Desert biome in Argentina with new host and locality records. Acta Parasitologica 49, 6366.Google Scholar
Lareschi, M., Sanchez, J.P., Ezquiaga, C., Autino, A., Díaz, M. & Barquez, R. (2010) Fleas associated with mammals from Northwestern Argentina, with new distributional reports. Comparative Parasitology 77, 215221.Google Scholar
Lareschi, M., Sanchez, J.P. & Autino, A. (2016) A review of the fleas (Insecta: Siphonaptera) from Argentina. Zootaxa 4103(3), 239258.Google Scholar
León, R.J.C., Bran, D., Collantes, M., Paruelo, J.M. & Soriano, A. (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8, 125144.Google Scholar
Linardi, P.M. & Guimaraes, L.R. (2000) Sifonápteros do Brasil. São Paulo, Brasil, MZUSP (Museu de Zoologia da Universidade de São Paulo), FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo).Google Scholar
Linardi, P.M. & Krasnov, B.R. (2012) Patterns of diversity and abundance of fleas (Insecta: Siphonaptera) and mites (Acari: Mesostigmata) in the Neotropics: host-related, parasite related and environment-related factors. Medical and Veterinary Entomology 27, 4958.Google Scholar
Linardi, P.M., Botelho, J.R., Ximenez, A. & Padovani, C.R. (1991) Notes on ectoparasites of some small mammals from Santa Catarina State, Brazil. Journal of Medical Entomology 28, 183185.Google Scholar
Lorange, E.A., Race, B.L., Sebbane, F. & Hinnebusch, B.J. (2005). Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. Journal of Infectious Diseases 191, 19071912.Google Scholar
Marshall, A.G. (1981) The Ecology of Ectoparasitic Insects. New York, Academic Press.Google Scholar
Meliyo, J.L., Kimaro, D.N., Msanya, B.M., Mulungu, L.S., Hieronimo, P., Kihupi, N.I., Gulinck, H. & Deckers, J.A. (2014) Predicting small mammal and flea abundance using landform and soil properties in a plague endemic area in Lushoto District, Tanzania. Tanzania Journal of Health Research 16(3), 161172.Google Scholar
Morrone, J.J. (2006) Biogeographic areas and transition zones of Latin American and the Caribbean Islands based on the panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology 51, 467494.Google Scholar
Nava, S. & Lareschi, M. (2012) Ecological characterization of a community ofarthropod parasitic of sigmodontine rodents in the Argentinean Chaco. Journal of Medical Entomology 49, 12761282.Google Scholar
PAHO (2012) Health in the Americas – Regional Outlook and Country Profiles. Washington, DC.: Pan American Health Organization.Google Scholar
Pardiñas, U.F.J., Teta, P., D'elía, G. & Lessa, E.P. (2011). The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biological Journal of the Linnean Society 103, 495513.Google Scholar
Pardiñas, U.F.J., Teta, P. & Salazar-Bravo, J. (2015) A new tribe of Sigmodontinae rodents (Cricetidae). Mastozoología Neotropical 22(1), 171186.Google Scholar
Paruelo, J.M., Jobbágy, E.G., Sala, O.E., Lauenroth, W.K. & Burke, I.C. (1998) Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecological Applications 8, 194206.Google Scholar
Patton, J.L., Pardiñas, U.F.J. & D'Elia, G. (2015) Mammals of South America. Rodents, Vol. 2. Chicago, Illinois, University of Chicago Press.Google Scholar
Poulin, R. (2011). Evolutionary Ecology of Parasites. Princeton, NJ, Princeton University Press.Google Scholar
Poulin, R., Krasnov, B.R. & Morand, S. (2006) Patterns of host specificity in parasites exploiting small mammals pp. 235256 in Morand, S., Krasnov, B.R. & Poulin, R. (Eds) Micromammals and Macroparasites. From Evolutionary Ecology to Management. Tokyo, Springer.Google Scholar
Rabassa, J. (2008). Late Cenozoic of Patagonia and Tierra del Fuego, 1st edn pp. 151204 in Rabassa, J. (ed.) The Late Cenozoic of Patagonia and Tierra del Fuego: Developments in Quaternary Science Volume 11. Amsterdam, Elsevier Science Publishers BV.Google Scholar
Rózsa, L., Reiczigel, J. & Majoros, G. (2000) Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.Google Scholar
Ruiz, A. (2001) Plague in the Americas. Emerging Infectious Diseases 7, 539540.Google Scholar
Sackett, L.C. (2017) Does the host matter? Variable influence of host traits on parasitism rates. International Journal for Parasitology 48, 2739.Google Scholar
Sanchez, J., Beaucournu, J.C. & Lareschi, M. (2015) Revision of fleas of the genus Plocopsylla belonging to the ‘angusticeps–lewisi’ complex in the Andean biogeographic region, with the description of a new species. Medical and Veterinary Entomology 29, 147158.Google Scholar
Sanchez, J.P. & Lareschi, M. (2013) The fleas (Insecta: Siphonaptera) parasites of sigmodontine rodents (Cricetidae) from northern Patagonia, Argentina. Comparative Parasitology 80, 110117.Google Scholar
Sanchez, J.P. & Lareschi, M. (2014) New records of fleas (Siphonaptera: Ctenophthalmidae, Rhopalopsyllidae and Stephanocircidae) from Argentinean Patagonia with remarks on the morphology of Agastopsylla boxi and Tiarapsylla argentina. Revista Mexicana de Biodiversidad 85, 383390.Google Scholar
Schneider, M.C., Najera, P., Aldighieri, S., Galan, D.I., Bertherat, E., Ruiz, A., Dumit, E., Gabastou, J.M. & Espinal, M.A. (2014) Where does human plague still persist in Latin America? PLoS Neglected Tropical Diseases 8(2), e2680. https://doi.org/10.1371/journal.pntd.0002680.Google Scholar
Smit, F.G.A.M. (1987) An Illustrated Catalogue of the Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History). Vol. VII. Malacopsylloidea (Malacopsyllidae and Rhopalopsyllidae). Oxford, Oxford University.Google Scholar
Tripp, D.W., Gage, K.L., Montenieri, J.A. & Antolin, M.F. (2009) Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics. Vector-Borne Zoonotic Disseases 9, 313321.Google Scholar
Tripp, D.W., Streich, S.P., Sack, D.A., Martin, D.J., Griffin, K.A. & Miller, M.W. (2016) Season of deltamethrin application affects flea and plague control in white-tailed prairie dog (Cynomys leucurus) colonies, Colorado, USA. Journal of Wildlife Diseases 52, 10290.Google Scholar
Whiting, M.F., Whiting, A.S., Hastriter, M.W. & Dittmar, K. (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24, 131.Google Scholar
Wilson, D.E. & Reeder, D.M. (2005) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn. Baltimore, MD, John Hopkins University Press.Google Scholar
World Health Organization (2011) World health statistics http://www.who.int/gho/publications/world_health_statistics/EN_WHS2011.Google Scholar