Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-44467 Total loading time: 0.188 Render date: 2021-06-21T17:54:11.028Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Using population genetic methods to identify the origin of an invasive population and to diagnose cryptic subspecies of Telchin licus (Lepidoptera: Castniidae)

Published online by Cambridge University Press:  13 September 2012

K.L. Silva-Brandão
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo. Av. Pádua Dias, 11, CEP 13418-900. Piracicaba, SP, Brazil
L.C. Almeida
Affiliation:
Centro de Tecnologia Canavieira, Fazenda Santo Antonio. CP 162, CEP 13400-970, Piracicaba, SP, Brazil
S.S. Moraes
Affiliation:
Curso de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, travessa 14, 321. CEP 05508-900, and Museu de Zoologia da Universidade de São Paulo, Av. Nazaré, 481, CEP 04263-000. São Paulo, SP, Brazil
F.L. Cônsoli
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo. Av. Pádua Dias, 11, CEP 13418-900. Piracicaba, SP, Brazil
Corresponding
E-mail address:

Abstract

Telchin licus, the giant sugarcane borer, is an important pest species of sugarcane in northeast Brazil. Four subspecies of Telchin licus are recognized in Brazil based on their geographic distribution and subtle differences in wing colour pattern. Some taxa are morphologically indistinguishable, and their accurate identification is key to their efficient control. Mitochondrial genes sequences (cytochrome oxidase I and subunit 6 of the nicotinamide adenine dinucleotide dehydrogenase) were applied to delimit taxonomic entities of T. licus, and to infer the origin of a newly established population in the state of São Paulo. The molecular data indicated that specimens sampled at different regions in Brazil are morphologically cryptic but genetically isolated entities, and at least three subspecies were assigned to the sampled localities. These data also suggested that the population collected from the state of São Paulo must have a common origin with populations from northeast Brazil, which corroborate the hypothesis that ornamental plants infested with larvae of T. licus might have been transported from the northeast to the southeast regions.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Almeida, L.C., Dias Filho, M.M. & Arrigoni, E.D.B. (2007) Primeira ocorrência de Telchin licus (Drury, 1773), a broca gigante da cana-de-açúcar, no Estado de São Paulo. Revista de Agricultura 82, 223226.Google Scholar
Avise, J.C. (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 312, 325342.CrossRefGoogle ScholarPubMed
Behere, G.T., Tay, W.T., Russell, D.A., Heckel, D.G., Appleton, B.R., Kranthi, K.R. & Batterham, P. (2007) Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evolutionary Biology 7, 117.CrossRefGoogle ScholarPubMed
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148155.CrossRefGoogle ScholarPubMed
Caterino, M.S., Reed, R.D., Kuo, M.M. & Sperling, F.A.H. (2001) A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Systematic Biology 50, 106127.CrossRefGoogle Scholar
Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571659.CrossRefGoogle ScholarPubMed
de León, G.P.P. & Nadler, S.A. (2010) What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453464.CrossRefGoogle ScholarPubMed
DeSalle, R., Egan, M.G. & Siddall, M. (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society, Series B: Biological Sciences 360, 19051916.CrossRefGoogle ScholarPubMed
Douglas, H., Dang, P.T., Gill, B.D., Huber, J., Mason, P.G., Parker, D.J. & Sinclair, B.J. (2009) The importance of taxonomy in responses to invasive alien species. Biodiversity 10, 9299.CrossRefGoogle Scholar
Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.CrossRefGoogle ScholarPubMed
Ellis, J.S., Blackshaw, R., Parker, W., Hicks, H. & Knight, M.E. (2009) Genetic identification of morphologically cryptic agricultural pests. Agricultural and Forest Entomology 11, 115121.CrossRefGoogle Scholar
Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.Google ScholarPubMed
Felsenstein, J. (1985) Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Gonzalez, J.M. & Cock, M.J.W. (2004) A synopsis of the Castniidae (Lepidoptera) of Trinidad and Tobago. Zootaxa 762, 119.Google Scholar
Guillemaud, T., Ciosi, M., Lombaert, E. & Estoup, A. (2011) Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. Comptes Rendus Biologies 334, 237246.CrossRefGoogle ScholarPubMed
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hasegawa, M., Kishino, H. & Yano, T.A. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial-DNA. Journal of Molecular Evolution 22, 160174.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences 270, 313321.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 1481214817.CrossRefGoogle ScholarPubMed
Houlbert, C. (1918) II. Révision monographique de la Sous-Famille des Castniinae Mars. xvi+728.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Lamas, G. (1995) A critical review of J. Y. Miller´s checklist of the Neotropical Castniidae (Lepidoptera). Revista Peruana de Entomología 37, 7387.Google Scholar
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Meier, R., Shiyang, K., Vaidya, G. & Ng, P.K.L. (2006) DNA Barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification sucess. Systematic Biology 55, 715728.CrossRefGoogle Scholar
Meyer, C.P. & Paulay, G. (2005) DNA barcoding: Error rates based on comprehensive sampling. Plos Biology 3, 22292238.CrossRefGoogle ScholarPubMed
Miller, J.Y. (1986) The Taxonomy, Phylogeny, and Zoogeography of the Neotropical Moth Subfamily Castniinae (Lepidoptera: Castnioidea: Castniidae). Gainesville, FL, USA, University of Florida.Google Scholar
Mills, N.J. & Kean, J.M. (2010) Behavioral studies, molecular approaches, and modeling: Methodological contributions to biological control success. Biological Control 52, 255262.CrossRefGoogle Scholar
Moraes, S.S. & Duarte, M. (2009) Morfologia externa comparada das três espécies do complexo Telchin licus. Revista Brasileira de Entomologia 53, 245265.CrossRefGoogle Scholar
Moraes, S.S., Duarte, M. & Gonzalez, J.M. (2010) Revision of Hista Oiticica (Lepidoptera: Castniidae) and discussion on the validity of its subspecies. Zootaxa 2421, 127.Google Scholar
Moritz, C., Dowling, T.E. & Brown, W.M. (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics 18, 269292.CrossRefGoogle Scholar
Nei, M. & Kumar, S. (2000) Molecular Evolution and Phylogenetics. New York, USA, Oxford University Press.Google Scholar
Norgate, M., Chamings, J., Pavlova, A., Bull, J.K., Murray, N.D. & Sunnucks, P. (2009) Mitochondrial DNA indicates late Pleistocene divergence of populations of Heteronympha merope, an emerging model in environmental change biology. Plos One 4, e7950.CrossRefGoogle ScholarPubMed
Paredes-Esquivel, C., Donnelly, M.J., Harbach, R.E. & Townson, H. (2009) A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: Implications for identification of disease vectors. Molecular Phylogenetics and Evolution 50, 141151.CrossRefGoogle ScholarPubMed
Paterson, H.E.H. (1991) The recognition of cryptic species among economically important insects. pp. 110in Zalucki, M.P. (Ed.) Heliothis: Research Methods and Prospects. New York, USA, Springer-Verlag.Google Scholar
Peña, C., Wahlberg, N., Weingartner, E., Kodandaramaiah, U., Nylin, S., Freitas, A.V.L. & Brower, A.V.Z. (2006) Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution 40, 2949.CrossRefGoogle ScholarPubMed
Porreta, D., Canestrelli, D., Bellini, R., Celli, G. & Urbanelli, S. (2007) Improving insect pest management through population genetic data: a case study of the mosquito Ochlerotatus caspius (Pallas). Journal of Applied Ecology 44, 682691.CrossRefGoogle Scholar
Rios, S.D. & Gonzalez, J.M. (2011) A synopsis of the Castniidae (Lepidoptera) of Paraguay. Zootaxa 3055, 4361.Google Scholar
Ríos-Díez, J.D. & Saldamando-Benjumea, C.I. (2011) Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: a study of the genetic basis of resistance. Journal of Economic Entomology 104, 16981705.CrossRefGoogle Scholar
Roe, A.D. & Sperling, F.A.H. (2007) Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implication for DNA barcoding. Molecular Phylogenetics and Evolution 44, 325345.CrossRefGoogle Scholar
Rosen, D. (1986) The role of taxonomy in effective biological control programs. Agriculture Ecosystems & Environment 15, 121129.CrossRefGoogle Scholar
Rugman-Jones, P.F., Hoddle, M.S. & Stouthamer, R. (2010) Nuclear-mitochondrial barcoding exposes the global pest Western Flower Thrips (Thysanoptera: Thripidae) as two sympatric cryptic species in its native California. Journal of Economic Entomology 103, 877886.CrossRefGoogle ScholarPubMed
Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google ScholarPubMed
Sarto i Monteys, V. & Aguilar, L. (2005) The Castniid Palm Borer, Paysandisia archon (Burmeister, 1880), in Europe: comparative biology, pest status and possible control methods (Lepidoptera: Castniidae). Nachrichten des Entomologischen Vereins Apollo 26, 6194.Google Scholar
Silva-Brandão, K.L., Freitas, A.V.L., Brower, A.V.Z. & Solferini, V.N. (2005) Phylogenetic relationships of the New World Troidini swallowtails (Lepidoptera: Papilionidae) based on COI, COII, and EF-1 alpha genes. Molecular Phylogenetics and Evolution 36, 468483.CrossRefGoogle Scholar
Silva-Brandão, K.L., Lyra, M.L. & Freitas, A.V.L. (2009) Barcoding Lepidoptera: current situation and perspectives on the usefulness of a contentious technique. Neotropical Entomology 38, 441451.CrossRefGoogle ScholarPubMed
Silva-Brandão, K.L., Lyra, M.L., Santos, T.V., Seraphim, N., Albernaz, K.C., Pavinato, V.A.C., Martinelli, S., Cônsoli, F.L. & Omoto, C. (2011) Exploitation of mitochondrial nad6 as a complementary marker to study population variability in Lepidoptera. Genetics and Molecular Biology 34, 719725.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Slatkin, M. (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457462.Google ScholarPubMed
Sperling, F.A.H. & Hickey, D.A. (1994) Mitochondrial-DNA sequence variation in the spruce budworm species complex (Choristoneura, Lepidoptera). Molecular Biology and Evolution 11, 656665.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619633.Google ScholarPubMed
Wahlberg, N. & Wheat, W. (2008) Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic Biology 57, 231242.CrossRefGoogle ScholarPubMed
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Using population genetic methods to identify the origin of an invasive population and to diagnose cryptic subspecies of Telchin licus (Lepidoptera: Castniidae)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Using population genetic methods to identify the origin of an invasive population and to diagnose cryptic subspecies of Telchin licus (Lepidoptera: Castniidae)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Using population genetic methods to identify the origin of an invasive population and to diagnose cryptic subspecies of Telchin licus (Lepidoptera: Castniidae)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *