Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-9sqjz Total loading time: 0.266 Render date: 2021-05-07T14:24:49.068Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests

Published online by Cambridge University Press:  20 June 2019

M.A. Navarro-Roldán
Affiliation:
Department of Crop and Forest Sciences, University of Lleida (UdL), 25198-Lleida, Spain
D. Bosch
Affiliation:
Department of Sustainable Crop Protection, Food and Agriculture Research Institute (IRTA)25198-Lleida,Spain
C. Gemeno
Affiliation:
Department of Crop and Forest Sciences, University of Lleida (UdL), 25198-Lleida, Spain
M. Siegwart
Affiliation:
Agronomic National Research Institute (INRA), UR 1115 PSH, Plantes et Systèmes de culture Horticoles, 84914-Avignon, France
Corresponding

Abstract

We examined the role of the most important metabolic enzyme families in the detoxification of neurotoxic insecticides on adult males and females from susceptible populations of Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). The interaction between the enzyme families – carboxylesterases (EST), glutathione-S-transferases (GST), and polysubstrate monooxygenases (PSMO) – with the insecticides – chlorpyrifos, λ-cyhalothrin, and thiacloprid – was studied. Insect mortality arising from the insecticides, with the application of enzyme inhibitors – S,S,S-tributyl phosphorotrithioate (DEF), diethyl maleate (DEM), and piperonyl butoxide (PBO) – was first determined. The inhibitors' influence on EST, GST, and PSMO activity was quantified. EST and PSMO (the phase-I enzymatic activities) were involved in the insecticide detoxification in the three species for both sexes, highlighting the role of EST, whereas GST (phase-II enzymes) was involved only in G. molesta insecticide detoxification. L. botrana exhibited, in general, the highest level of enzymatic activity, with a significantly higher EST activity compared with the other species. It was the only species with differences in the response between sexes, with higher GST and PSMO activity in females than in males, which can be explained as the lower susceptibility of the females to the tested insecticides. A positive correlation between PSMO activity and the thiacloprid LD50s in the different species-sex groups was observed explaining the species-specific differences in susceptibility to the product reported in a previous study.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ahmad, M. & Hollingworth, R.M. (2004) Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the oblique-banded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Management Science 60(5), 465473.CrossRefGoogle Scholar
Bernard, C.B. & Philogène, B.J. (1993) Insecticide synergists: role, importance, and perspectives. Journal of Toxicology and Environmental Health-Part A 38(2), 199223.CrossRefGoogle Scholar
Biddinger, D.J., Hull, L.A. & McPheron, B.A. (1996) Cross-resistance and synergism in azinphosmethyl resistant and susceptible strains of tufted apple bud moth (Lepidoptera: Tortricidae) to various insect growth regulators and abamectin. Journal of Economic Entomology 89(2), 274287.CrossRefGoogle Scholar
Bingham, G., Gunning, R.V., Delogu, G., Borzatta, V., Field, L.M. & Moores, G.D. (2008) Temporal synergism can enhance carbamate and neonicotinoid insecticidal activity against resistant crop pests. Pest Management Science 64(1), 8185.CrossRefGoogle ScholarPubMed
Bosch, D., Avilla, J., Musleh, S. & Rodríguez, M.A. (2018) Target-site mutations (AChE and kdr), and PSMO activity in codling moth (Cydia pomonella (L.) (Lepidoptera: Tortricidae)) populations from Spain. Pesticide Biochemistry and Physiology 146: 5262.CrossRefGoogle ScholarPubMed
Bouvier, J.C., Boivin, T., Beslay, D. & Sauphanor, B. (2002) Age-dependent response to insecticides and enzymatic variation in susceptible and resistant codling moth larvae. Archives of Insect Biochemistry and Physiology 51(2), 5566.CrossRefGoogle ScholarPubMed
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1–2), 248254.CrossRefGoogle ScholarPubMed
Brown, T.M. & Brogdon, W.G. (1987) Improved detection of insecticide resistance through conventional and molecular techniques. Annual Review of Entomology 32(1), 145162.CrossRefGoogle ScholarPubMed
Casida, J.E. & Quistad, G.B. (2004) Why insecticides are more toxic to insects than people: the unique toxicology of insects. Journal of Pesticide Science 29, 8186.Google Scholar
Civolani, S., Boselli, M., Butturini, A., Chicca, M., Fano, E.A. & Cassanelli., S. (2014) Assessment of insecticide resistance of Lobesia botrana (Lepidoptera: Tortricidae) in Emilia-Romagna Region. Journal of Economic Entomology 107, 12451249.CrossRefGoogle Scholar
Damos, P., Colomar, L.A.E. & Ioriatti, C. (2015) Integrated fruit production and pest management in Europe: the apple case study and how far we are from the original concept? Insects 6(3), 626657.CrossRefGoogle ScholarPubMed
de Lame, F.M., Hong, J.J., Shearer, P.W. & Brattsten, L.B. (2001) Sex-related differences in the tolerance of oriental fruit moth (Grapholita molesta) to organophosphate insecticides. Pest Management Science 57(9), 827832.CrossRefGoogle ScholarPubMed
Deng, Z.Z., Zhang, F., Wu, Z.L., Yu, Z.Y. & Wu, G. (2016) Chlorpyrifos-induced hormesis in insecticide-resistant and-susceptible Plutella xylostella under normal and high temperatures. Bulletin of Entomological Research 106(03), 378386.CrossRefGoogle ScholarPubMed
Després, L., David, J.P. & Gallet, C. (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution 22(6), 298307.CrossRefGoogle ScholarPubMed
Devonshire, A.L. & Moores, G.D. (1982) A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pesticide Biochemical Physiology 18, 235246.CrossRefGoogle Scholar
Dunley, J.E., & Welter, S.C. (2000) Correlated insecticide cross-resistance in azinphosmethyl resistant codling moth (Lepidoptera: Tortricidae). Journal of economic entomology 93(3), 955962.CrossRefGoogle Scholar
Enayati, A.A., Ranson, H. & Hemingway, J. (2005) Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14(1), 38.CrossRefGoogle ScholarPubMed
Faucon, F., Dusfour, I., Gaude., T, Navratil, V., Boyer, F., Chandre, F., Sirisopa, P., Thanispong, K., Juntarajumnong, W., Poupardin, R., Chareonviriyaphap, T., Girod, R., Corbel, V., Reynaud, S. & David, J.P. (2015) Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Research 25, 13471359.CrossRefGoogle ScholarPubMed
Feyereisen, R. (1999) Insect P450 enzymes. Annual Review of Entomology 44(1), 507533.CrossRefGoogle ScholarPubMed
Guo, Y., Chai, Y., Zhang, L., Zhao, Z., Gao, L.L. & Ma, R. (2017) Transcriptome analysis and identification of major detoxification gene families and insecticide targets in Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Journal of Insect Science 17(2), 4357.CrossRefGoogle Scholar
Hatipoglu, A., Durmusoglu, E. & Gürkan, O. (2015) Manisa ili bağ alanlarında Salkım güvesi [Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae)] popülasyonlarının insektisit direncinin belirlenmesi. Türkiye Entomoloji Dergisi-Turkish Journal of Entomology 39(1), 5565.Google Scholar
Hemingway, J. (2000) The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochemistry and Molecular Biology 30(11), 10091015.CrossRefGoogle ScholarPubMed
Hodgson, E & Levi, P.E. (1998), Interactions of piperonyl butoxide with cytochrome P450. pp. 4154 in Jones, D.G. (Ed.), Piperonyl Butoxide. London, Academic Press.Google Scholar
Ioriatti, C., Anfora, G., Tasin, M., de Cristofaro, A., Witzgall, P. & Lucchi, A. (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology 104(4), 11251137.CrossRefGoogle Scholar
İşci, M. & Ay, R. (2017) Determination of resistance and resistance mechanisms to thiacloprid in Cydia pomonella L. (Lepidoptera: Tortricidae) populations collected from apple orchards in Isparta Province, Turkey. Crop Protection 91, 8288.CrossRefGoogle Scholar
Ivaldi-Sender, C. (1974) Techniques simples pour elevage permanent de la tordeuse orientale, Grapholita molesta (Lep., Tortricidae), sur milieu artificiel. Annales de Zoologie Ecologie Animale 6, 337343.Google Scholar
Iwasa, T., Motoyama, N., Ambrose, J.T. & Roe, R.M. (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection 23, 371378.CrossRefGoogle Scholar
Karoly, E.D., Rose, R.L., Thompson, D.M., Hodgson, E., Rock, G.C. & Roe, R.M. (1996) Monooxygenase, esterase, and glutathione transferase activity associated with azinphosmethyl resistance in the tufted apple bud moth, Platynota idaeusalis. Pesticide Biochemistry and Physiology 55(2), 109121.CrossRefGoogle ScholarPubMed
Kirk, H., Dorn, S. & Mazzi, D. (2013) Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecology 13(1), 12.CrossRefGoogle Scholar
Krieger, R.I., Feeny, P.P. & Wilkinson, C.F. (1971) Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? Science 172(3983), 579581.CrossRefGoogle ScholarPubMed
Levi, P.E., Hollingworth, R.M. & Hodgson, E. (1988) Differences in oxidative dearylation and desulfuration of fenitrothion by cytochrome P-450 isozymes and in the subsequent inhibition of monooxygenase activity. Pesticide Biochemistry and Physiology 32(3), 224231.CrossRefGoogle Scholar
Li, X., Schuler, M.A. & Berenbaum, M.R. (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology 52, 231253.CrossRefGoogle ScholarPubMed
(MAPAMA). Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. (2017) Registro de Productos Fitosanitarios. Available online at http://www.mapama.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro/menu.asp (Accessed April 2017).Google Scholar
Matsumura, F. (1985) Metabolism of insecticides by animals and plants. In Toxicology of Insecticides. Mastumura, F. (Ed.) pp. 203298, Plenum Press, New York.Google Scholar
Metcalf, R.L. (1967) Mode of action of insecticide synergists. Annual Review of Entomology 12(1), 229256.CrossRefGoogle ScholarPubMed
Montella, I.R., Schama, R. & Valle, D. (2012) The classification of esterases: an important gene family involved in insecticide resistance-A review. Memorias do Instituto Oswaldo Cruz 107(4), 437449.CrossRefGoogle ScholarPubMed
Nauen, R. & Stumpf, N. (2002) Fluorometric microplate assay to measure glutathione S-transferase activity in insects and mites using monochlorobimane. Analytical Biochemistry 303(2), 194198.CrossRefGoogle ScholarPubMed
Navarro-Roldán, M.A. (2017) Detoxification and sublethal effects of neurotoxic insecticides in Tortricid moths. PhD University of Lleida. 1, 1200. Available online at https://www.tesisenred.net/handle/10803/462995 (Accessed May 2019).CrossRefGoogle Scholar
Navarro-Roldán, M.A., Avilla, J., Bosch, D., Valls, J. & Gemeno, C. (2017) Comparative effect of three neurotoxic insecticides with different modes of action on adult males and females of three tortricid moth pests. Journal of Economic Entomology doi: 10.1093/jee/tox113.CrossRefGoogle ScholarPubMed
Parra-Morales, L.B., Alzogaray, R.A., Cichón, L., Garrido, S., Soleño, J. & Montagna, C.M. (2017) Effects of chlorpyrifos on enzymatic systems of Cydia pomonella (Lepidoptera: Tortricidae) adults. Insect Science 24, 455466.CrossRefGoogle ScholarPubMed
Poupardin, R., Reynaud, S., Strode, C., Ranson, H., Vontas, J. & David, J.P. (2008) Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochemistry and Molecular Biology 38(5), 540551.CrossRefGoogle ScholarPubMed
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/ (accessed 1 September 2017).Google Scholar
Reuveny, H. & Cohen, E. (2004) Evaluation of mechanisms of azinphos-methyl resistance in the codling moth Cydia pomonella (L.). Archives of Insect Biochemistry and Physiology 57(2), 92100.CrossRefGoogle Scholar
Reyes, M. (2007) La résistance aux insecticides chez le carpocapse des pommes: mécanismes, détection et variabilité géographique. PhD University of Avignon. Avignon.Google Scholar
Reyes, M., Franck, P., Charmillot, P.J., Ioriatti, C., Olivares, J., Pasqualini, E. & Sauphanor, B. (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Management Science 63(9), 890902.CrossRefGoogle ScholarPubMed
Reyes, M., Barros-Parada, W., Ramírez, C.C. & Fuentes-Contreras, E. (2015) Organophosphate resistance and its main mechanism in populations of codling moth (Lepidoptera: Tortricidae) from Central Chile. Journal of Economic Entomology 108(1), 277285.CrossRefGoogle ScholarPubMed
Roberts, T.R. & Hutson, D.H. (1998) Metabolic Pathways of Agrochemicals: Insecticides and Fungicides, (Vol. 1). Cambridge, UK, Royal Society of Chemistry.Google Scholar
Rodríguez, M.A., Bosch, D., Sauphanor, B. & Avilla, J. (2010) Susceptibility to organophosphate insecticides and activity of detoxifying enzymes in Spanish populations of Cydia pomonella (Lepidoptera: Tortricidae). Journal of Economic Entomology 103(2), 482491.CrossRefGoogle Scholar
Rose, H.A. (1985) The relationship between feeding specialization and host plants to aldrin epoxidase activities of midgut homogenates in larval Lepidoptera. Ecological Entomology 10(4), 455467.CrossRefGoogle Scholar
Sauphanor, B., Cuany, A., Bouvier, J.C., Brosse, V., Amichot, M. & Bergé, J.B. (1997) Mechanism of resistance to deltamethrin in Cydia pomonella (L.) (Lepidoptera: Tortricidae). Pesticide Biochemistry and Physiology 58(2), 109117.CrossRefGoogle Scholar
Scott, J.G. (1999) Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology 29(9), 757777.CrossRefGoogle ScholarPubMed
Shearer, P.W. & Usmani, K.A. (2001) Sex-related response to organophosphorus and carbamate insecticides in adult oriental fruit moth, Grapholita molesta. Pest Management Science 7(9), 822826.CrossRefGoogle Scholar
Sial, A.A. & Brunner, J.F. (2012) Selection for resistance, reversion towards susceptibility and synergism of chlorantraniliprole and spinetoram in obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Management Science 68, 462468.CrossRefGoogle Scholar
Siegwart, M., Monteiro, L.B., Maugin, S., Olivares, J., Malfitano-Carvalho, S. & Sauphanor, B. (2011) Tools for resistance monitoring in oriental fruit moth (Lepidoptera: Tortricidae) and first assessment in Brazilian populations. Journal of Economic Entomology 104(2), 636645.CrossRefGoogle ScholarPubMed
Snoeck, S., Greenhalgh, R., Tirry, L., Clark, R.M., Van Leeuwen, T. & Dermauw, W. (2017) The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Scientific Reports 7, 13440 Available online at http://www.nature.com/scientificreports.CrossRefGoogle Scholar
Soderlund, D.M. & Bloomquist, J.R. (1990) Molecular mechanisms of insecticide resistance. pp. 5895 in Pesticide Resistance in Arthropods, Roush, R.T. and Tabashnik, B.E. (Eds), New York, Chapman and Hall.CrossRefGoogle Scholar
Terriere, L.C. (1984) Induction of detoxication enzymes in insects. Annual Review of Entomology 29(1), 7188.CrossRefGoogle ScholarPubMed
Ullrich, V. & Weber, P. (1972) The O-dealkylation of 7-ethoxycoumarin by liver microsomes. A direct fluorometric test. Hoppe-Seyler's Zeitschrift für physiologische Chemie 353(2), 11711177.CrossRefGoogle ScholarPubMed
Usmani, K.A. & Knowles, C.O. (2001) Toxicity of pyrethroids and effect of synergists to larval and adult Helicoverpa zea, Spodoptera frugiperda, and Agrotis ipsilon (Lepidoptera: Noctuidae). Journal of Economic Entomology 94(4), 868873.CrossRefGoogle Scholar
Vogelweith, F., Thiery, D., Quaglietti, B., Moret, Y. & Moreau, J. (2011). Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Functional Ecology 25, 12411247.CrossRefGoogle Scholar
Vojoudi, S., Saber, M., Gharekhani, G. & Esfandiari, E. (2017) Toxicity and sublethal effects of hexaflumuron and indoxacarb on the biological and biochemical parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Iran. Crop Protection 91, 100107.CrossRefGoogle Scholar
Willoughby, L., Batterham, P. & Daborn, P.J. (2007) Piperonyl butoxide induces the expression of cytochrome P450 and glutathione S-transferase genes in Drosophila melanogaster. Pest Management Science 63(8), 803808.CrossRefGoogle ScholarPubMed
Wu, G., Miyata, T., Kang, C.Y. & Xie, L.H. (2007) Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops. Pest Management Science 63, 500510.CrossRefGoogle ScholarPubMed
Xie, W., Wang, S., Wu, Q., Feng, Y., Pan, H., Jiao, X., Zhou, L., Yang, X., Fu, W., Teng, H., Xu, B. & Zhang, Y. (2011) Induction effects of host plants on insecticide susceptibility and detoxification enzymes of Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 67, 8793.CrossRefGoogle Scholar
Xue, M., Pang, Y.H., Li, Q.L. & Liu, T.X. (2010) Effects of four host plants on susceptibility of Spodoptera litura (Lepidoptera: Noctuidae) larvae to five insecticides and activities of detoxification esterases. Pest Management Science 66, 12731279.CrossRefGoogle ScholarPubMed
Yang, X., Margolies, D.C., Zhu, K.Y. & Buschman, L.L. (2001) Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the two spotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology 94(2), 381387.CrossRefGoogle Scholar
Young, S.J., Gunning, R.V. & Moores, G.D. (2005) The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Management Science 61(4), 397401.CrossRefGoogle Scholar
Young, S.J., Gunning, R.V. & Moores, G.D. (2006) Effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide-resistant Helicoverpa armigera (Lepidoptera: Noctuidae) and Bemisia tabaci (Sternorrhyncha: Aleyrodidae). Pest Management Science 62(2), 114119.CrossRefGoogle Scholar
Yu, S.J. (2004) Induction of detoxification enzymes by triazine herbicides in the fall armyworm, Spodoptera frugiperda (JE Smith). Pesticide Biochemistry and Physiology 80(2), 113122.CrossRefGoogle Scholar
Yu, S.J. (2008) The Toxicology and Biochemistry of Insecticides, Boca Raton, FL, USA, CRC Press/Taylor and Francis.Google Scholar
Yu, S.J. & Hsu, E.L. (1993) Induction of detoxification enzymes in phytophagous insects: role of insecticide synergists, larval age, and species. Archives of Insect Biochemistry and Physiology 24(1), 2132.CrossRefGoogle Scholar
Yu, S.J., Nguyen, S.N. & Abo-Elghar, G.E. (2003) Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (JE Smith). Pesticide Biochemistry and Physiology 77(1), 111.CrossRefGoogle Scholar
Zimmer, C.T., Panini, M., Singh, K.S., Randall, E.L., Field, L.M., Roditakis, E., Mazzoni, E. & Bass, C. (2017). Use of the synergist piperonyl butoxide can slow the development of alpha-cypermethrin resistance in the whitefly Bemisia tabaci. Insect Molecular Biology 26(2), 152163.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *