Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T13:43:06.882Z Has data issue: false hasContentIssue false

The effect of cortisone acetate on the course of development of experimental protein-energy malnutrition in rats

Published online by Cambridge University Press:  09 March 2007

P. G. Lunn
Affiliation:
University of Cambridge and Medical Research Council, Dunn Nutrition Unit, Milton Road, Cambridge CB4 1XJ
R. G. Whitehead
Affiliation:
University of Cambridge and Medical Research Council, Dunn Nutrition Unit, Milton Road, Cambridge CB4 1XJ
B. A. Baker
Affiliation:
University of Cambridge and Medical Research Council, Dunn Nutrition Unit, Milton Road, Cambridge CB4 1XJ
S. Austin
Affiliation:
University of Cambridge and Medical Research Council, Dunn Nutrition Unit, Milton Road, Cambridge CB4 1XJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The role of corticosteroids in determining which clinical features of protein-energy malnutrition develop on a deficient diet has been studied by the administration of cortisone acetate to experimentally malnourished rats fed ad lib. on a mixture containing 31 g protein/kg.

2. Daily administration of 1.25 mg cortisone acetate did not affect dietary intake, which remained the same as in saline (9 g sodium chloride/l)-injected controls. Plasma albumin concentrations, however, increased from a low value of 25.7 g/1 to 47.2 g/l and this was accompanied by an increase both in liver weight and protein content. On the other hand, the protein content of muscle decreased.

3. These changes in the protein contents of liver and muscle were associated with alterations in the corresponding free amino acid pools. The free amino acid content of muscle generally decreased, but in liver many amino acids were increased.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Abbassy, A. S., Mikhail, M., Zeitoun, M. M. & Ragab, M. (1967). J. trop. Pediat, 13, 154.Google Scholar
Alleyne, G. A. O. & Young, V. H. (1967). Clin. Sci. 33, 189.Google Scholar
Betheil, J. J., Feigelson, M. & Feigelson, P. (1965). Biochim. biophys. Acta 104, 92.CrossRefGoogle Scholar
Castellanos, H. & Arroyave, G. (1961). Am. J. clin. Nutr. 9, 186.Google Scholar
Coward, W. A. (1975). Br. J. Nutr. 34, 459.CrossRefGoogle Scholar
Gornall, A. G., Bardawill, E. S. & David, M. M. (1949). J. biol. Chem. 177, 751.CrossRefGoogle Scholar
Hales, C. N. & Randle, P. J. (1963). Biochem. J. 88, 137.Google Scholar
Hanoune, J. & Chambaut, A. M. (1972). Horm. Metab. Res. 4, 254.CrossRefGoogle Scholar
Kaplan, S. A. & Shimizu, C. N. S. (1962). Am. J. Physiol. 202, 659.CrossRefGoogle Scholar
Kaplan, S. A. & Shimizu, C. N. S. (1963). Endocrinology 72, 267.Google Scholar
Kenney, F. T. (1970). In Mammalian Protein Metabolism, Vol. 4, p. 131 [Munro, H. N. editor]. New York and London: Academic Press.Google Scholar
Kirsch, R. E., Saunders, S. J., Frith, L., Wicht, S., Kelman, L. & Brock, J. F. (1969). Am. J. clin. Nutr. 22, 1559.Google Scholar
Lancet (1970). Lancet ii, 302.Google Scholar
Lunn, P. G., Whitehead, R. G., Hay, R. W. & Baker, B. A. (1973). Br. J. Nutr. 29, 399.Google Scholar
Lunn, P. G., Whitehead, R. G. & Baker, B. A. (1976). Br. J. Nutr. 36, 219.Google Scholar
Munro, H. N.(editor) (1970). In Mammalian Protein Metabolism, Vol. 4, p. 299 [Munro, H. N. editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Murphey, B. E. P. (1967). J. clin. Endocr. Metab. 27, 973.Google Scholar
Northam, B. E. & Widdowson, G. W. (1967). Ass. Clin. Biochem. tech. Bull. no. 11.Google Scholar
Rao, K. S. J. (1974). Lancet i, 709.CrossRefGoogle Scholar
Rao, K. S. J., Srikantia, S. G. & Gopalan, C. (1968). Archs Dis. Childh. 43, 365.Google Scholar
Rosen, F., Harding, H. R., Milholland., R. J. & Nicol, C. A. (1963). J. biol. Chem. 238, 3725.CrossRefGoogle Scholar
Ryan, W. L. & Carver, M. J. (1963). Proc. Soc. exp. Biol. Med. 114, 816.Google Scholar
Technicon Instruments Co. Ltd (1967). Technicon Clinical Method no. 519–73E. Basingstoke, Hants: Technicon Instruments Co Ltd.Google Scholar
Waterlow, J. C. & Alleyne, G. A. O. (1971). In Advances in Protein Chemistry, Vol. 25, p. 117 [Anfinsen, C. B., Edsell, J. T. and Richards, F. M., editors]. New York and London: Academic Press.Google Scholar
Weber, G., Srivastava, S. K. & Singhal, R. L. (1965). J. biol. Chem. 240, 750.CrossRefGoogle Scholar
Whitehead, R. G. & Alleyne, G. A. O. (1972). Br. med. Bull. 28, 72.CrossRefGoogle Scholar