Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T01:16:23.328Z Has data issue: false hasContentIssue false

Dietary iron intake over two post-fortification periods in Brazil: data from the National Dietary Surveys 2008–2009 and 2017–2018

Published online by Cambridge University Press:  11 January 2023

Eduardo De Carli*
Affiliation:
Department of Nutrition, School of Public Health, University of Sao Paulo (USP), Sao Paulo, Brazil
Eliseu Verly Jr
Affiliation:
Institute of Social Medicine, Rio de Janeiro State University (UERJ), Rio De Janeiro, Brazil
Cecília Zanin Palchetti
Affiliation:
Department of Nutrition, School of Public Health, University of Sao Paulo (USP), Sao Paulo, Brazil
Rosely Sichieri
Affiliation:
Institute of Social Medicine, Rio de Janeiro State University (UERJ), Rio De Janeiro, Brazil
Edna Massae Yokoo
Affiliation:
Department of Epidemiology and Biostatistics, Universidade Federal Fluminense (UFF), Niterói, Rio De Janeiro, Brazil
Rosangela Alves Pereira
Affiliation:
Department of Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio De Janeiro, Brazil
Dirce Maria Lobo Marchioni
Affiliation:
Department of Nutrition, School of Public Health, University of Sao Paulo (USP), Sao Paulo, Brazil
*
*Corresponding author: Eduardo De Carli, email edecarli@usp.br

Abstract

We aimed to assess the dietary Fe intake and the prevalence of inadequate Fe intake over two post-fortification periods in Brazil. The intake was analysed according to sex, life stage, geographic region and stratum of family income per capita. Excluding pregnant and lactating women, this population-based study included 32 749 and 44 744 participants aged ≥ 10 years from the National Dietary Survey-Brazilian Household Budget Surveys 2008–2009 and 2017–2018, respectively. The National Cancer Institute method was used to predict usual dietary Fe intakes. The prevalence of Fe intake inadequacy was estimated following a probabilistic approach for women of childbearing age or with the Estimated Average Requirement cut-off point method. Over an interval of 10 years, the mean Fe intake remained almost unchanged for most sex-age groups, except for women of childbearing age. In this specific group, the prevalence of Fe intake inadequacy was > 20 % in 2008–2009 and have increased to > 25 % in 2017–2018, with the highest reductions in mean Fe intake found in the highest income strata and richest Brazilian regions. Meanwhile, the highest prevalence of Fe intake inadequacy (> 40 %) occurred among the poorest women aged 31–50 years from the lowest family income stratum, irrespective of the study period. Beans were the main Fe source, while fortified breads, pastas, pizzas, cakes and cookies contributed approximately 40 % of the Fe intake. The results provide important insights into the long-standing dietary impacts of food fortification, which can guide future (re)formulation of effective public health strategies to combat Fe deficiency.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Camaschella, C (2019) Iron deficiency. Blood 133, 3039.CrossRefGoogle ScholarPubMed
Safiri, S, Kolahi, A, Noori, M, et al. (2021) Burden of anemia and its underlying causes in 204 countries and territories, 1990–2019: results from the Global Burden of Disease Study 2019. J Hematol Oncol 14, 185.CrossRefGoogle ScholarPubMed
Murray, CJL, Aravkin, AY, Zheng, P, et al. (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 12231249.CrossRefGoogle Scholar
Institute of Medicine & National Academy of Sciences (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press.Google Scholar
Hurrel, RF (2022) Ensuring the efficacious iron fortification of foods: a tale of two barriers. Nutrients 14, 1609.CrossRefGoogle Scholar
Tong, H & Walker, N (2021) Current levels of coverage of iron and folic acid fortification are insufficient to meet the recommended intake for women of reproductive age in low- and middle-income countries. J Glob Health 11, 18002.CrossRefGoogle ScholarPubMed
Brazil (2002) Brazilian Health Regulatory Agency. Aprova o Regulamento Técnico para a Fortificação das Farinhas de Trigo e das Farinhas de Milho com Ferro e Ácido Fólico (Approve the Technical Regulations for the Fortification of Wheat Flour and Corn Flour with Iron and Folic Acid). Diário Oficial da União, Poder Executivo; Brasília. Resolução RDC nº 344. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2002/rdc0344_13_12_2002.html (accessed June 2022).Google Scholar
World Health Organization (2022) Prevalence of Anaemia in Women of Reproductive Age (Aged 15–49) (%). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-(-) (accessed June 2022).Google Scholar
Santos, Q, Nilson, EAF, Verly Junior, E, et al. (2015) An evaluation of the effectiveness of the flour iron fortification programme in Brazil. Public Health Nutr 18, 1670–1574.CrossRefGoogle ScholarPubMed
Veiga, GV, Costa, RS, Araujo, MC, et al. (2013) Inadequate nutrient intake in Brazilian adolescents. Rev Saude Publica 47, 212S221S.CrossRefGoogle ScholarPubMed
Araujo, MC, Bezerra, IN, Barborsa, FS, et al. (2013) Macronutrient consumption and inadequate micronutrient intake in adults. Rev Saude Publica 47, 177S189S.CrossRefGoogle ScholarPubMed
Fisberg, RM, Marchioni, DML, Castro, MA, et al. (2013) Inadequate nutrient intake among the Brazilian elderly: National Dietary Survey 2008–2009. Rev Saude Publica 47, 222S230S.CrossRefGoogle ScholarPubMed
Brazilian Institute of Geography and Statistics (IBGE) (2011) Pesquisa de Orçamentos Familiares 2008–2009: Análise do Consumo Alimentar Pessoal no Brasil (Household Budget Surveys 2008–2009: Analysis of personal food intake in Brazil). Rio de Janeiro: IBGE. https://biblioteca.ibge.gov.br/visualizacao/livros/liv50063.pdf (accessed June 2022).Google Scholar
Brazilian Institute of Geography and Statistics (IBGE) (2020) Pesquisa de Orçamentos Familiares 2017–2018: Análise do Consumo Alimentar Pessoal no Brasil (Household Budget Surveys 2017–2018: Analysis of personal food intake in Brazil). Rio de Janeiro: IBGE. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101742.pdf (accessed June 2022).Google Scholar
Moshfegh, AJ, Rhodes, DG, Baer, DJ, et al. (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr 88, 324332.CrossRefGoogle ScholarPubMed
Rodrigues, RM, De Carli, E, Araujo, MC, et al. (2021) Limitations in the comparison of the Brazilian National Dietary Surveys of 2008–2009 and 2017–2018. Rev Saude Publica 55, 3s.Google ScholarPubMed
Brazilian Institute of Geography and Statistics (IBGE) (2011) Pesquisa de Orçamentos Familiares 2008–2009: Tabela de Medidas Referidas para Alimentos Consumidos no Brasil (Household Budget Surveys 2008–2009: Table of Reference Measures for Food Consumed in Brazil). Rio de Janeiro: IBGE. https://biblioteca.ibge.gov.br/visualizacao/livros/liv50000.pdf (accessed June 2022).Google Scholar
Universidade de São Paulo (USP) & Food Research Center (FoRC) (2020) Tabela Brasileira de Composição de Alimentos (TBCA). Versão 7.1 (Brazilian Food Composition Table (TBCA). Version 7.1). São Paulo. http://www.fcf.usp.br/tbca (accessed June 2022).Google Scholar
Grande, F, Giuntini, EB, Coelho, KS, et al. (2019) Elaboration of a standardized dataset for foods fortified with iron and folic acid in Brazil. J Food Compos Anal 83, 103285.CrossRefGoogle Scholar
Tooze, JA, Midthune, D, Dodd, KW, et al. (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106, 15751587.CrossRefGoogle ScholarPubMed
Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes & Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (2000) DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington, DC: National Academies Press (US).Google Scholar
Farias, MR, Leite, SN, Tavares, NUL, et al. (2016) Use of and access to oral and injectable contraceptives in Brazil. Rev Saude Publica 50, 14S.CrossRefGoogle ScholarPubMed
Barbosa, FS, Sichieri, R & Junger, WL (2013) Assessing usual dietary intake in complex sample design surveys: the National Dietary Survey. Rev Saude Publica 47, 171S176S.CrossRefGoogle ScholarPubMed
Block, G, Dresser, CM, Hartman, AM, et al. (1985) Nutrient sources in the American diet: quantitative data from the NHANES II survey. I. Vitamins and minerals. Am J Epidemiol 122, 1326.CrossRefGoogle ScholarPubMed
Vieira, DAS, Steluti, J, Verly, E Jr, et al. (2017) Brazilians’ experiences with iron fortification: evidence of effectiveness for reducing inadequate iron intakes with fortified flour policy. Public Health Nutr 20, 363370.CrossRefGoogle ScholarPubMed
Sales, CH, Rogero, MM, Sarti, FM, et al. (2021) Prevalence and factors associated with iron deficiency and anemia among residents of urban areas of São Paulo, Brazil. Nutrients 13, 1888.CrossRefGoogle ScholarPubMed
Sadighi, J, Nedjat, S & Rostami, R (2019) Systematic review and meta-analysis of the effect of iron-fortified flour on iron status of populations worldwide. Public Health Nutr 22, 34653484.CrossRefGoogle ScholarPubMed
U.S. Department of Agriculture, Agricultural Research Service Food Surveys Research Group. What We Eat in America Data Tables, NHANES 2017–2018 (Last Modified: 8 March 2022). https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweia-data-tables/ (accessed June 2022).Google Scholar
Food and Drug Administration (FDA) (1980) Nutritional quality of foods; addition of nutrients. Final policy statement. Fed Regist 45, 63146324.Google Scholar
Verly Junior, E, Marchioni, DM, Araujo, MC, et al. (2021) Evolution of energy and nutrient intake in Brazil between 2008–2009 and 2017–2018. Rev Saude Publica 55, 5s.CrossRefGoogle ScholarPubMed
Rodrigues, RM, Souza, AM, Bezerra, IN, et al. (2021) Most consumed foods in Brazil: evolution between 2008–2009 and 2017–2018. Rev Saude Publica 55, 4s.CrossRefGoogle ScholarPubMed
Brazilian Institute of Geography and Statistics (IBGE) (2020) Pesquisa de Orçamentos Familiares 2017–2018: Análise da segurança alimentar no Brasil (Household Budget Surveys 2017–2018: Analysis of Food Security in Brazil). Rio de Janeiro: IBGE. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101749.pdf (accessed June 2022).Google Scholar
Kubo, SEAC, Costa, THM & Gubert, MB (2020) Intakes of energy, macronutrients and micronutrients of a population in severe food insecurity risk in Brazil. Public Health Nutr 23, 649659.CrossRefGoogle ScholarPubMed
Popkin, BM & Reardon, T (2018) Obesity and the food system transformation in Latin America. Obes Rev 19, 10281064.CrossRefGoogle ScholarPubMed
Gonçalves, HVB, Canella, DS & Bandoni, DH (2020) Temporal variation in food consumption of Brazilian adolescents (2009–2015). PLoS One 15, e0239217.CrossRefGoogle Scholar
Granado, FS, Maia, EG, Mendes, LL, et al. (2020) Reduction of traditional food consumption in Brazilian diet: trends and forecasting of bean consumption (2007–2030). Public Health Nutr 24, 11851192.CrossRefGoogle ScholarPubMed
Antunes, ABS, Cunha, DB, Baltar, VT, et al. (2021) Dietary patterns of Brazilian adults in 2008–2009 and 2017–2018. Rev Saude Publica 55, 8s.CrossRefGoogle ScholarPubMed
Andrade, GC, Louzada, MLC, Azeredo, CM, et al. (2018) Out-of-home food consumers in Brazil: what do they eat? Nutrients 10, 218.CrossRefGoogle ScholarPubMed
Louzada, MLC, Baraldi, LG, Steele, EM, et al. (2015) Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med 81, 915.CrossRefGoogle ScholarPubMed
Louzada, MLC, Martins, APB, Canella, DS, et al. (2015) Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica 49, 45.Google ScholarPubMed
Brazil (2014) Ministry of Health of Brazil. Secretariat of Health Care. Primary Health Care Department. Dietary Guidelines for the Brazilian population https://bvsms.saude.gov.br/bvs/publicacoes/dietary_guidelines_brazilian_population.pdf (accessed June 2022).Google Scholar
Farsi, DN, Uthumange, D, Munoz, JM, et al. (2021) The nutritional impact of replacing dietary meat with meat alternatives in the UK: a modelling analysis using nationally representative data. Br J Nutr (Epublication ahead of print version 21 July 2021).Google Scholar
Salomé, M, Huneau, JF, Baron, C, et al. (2021) Substituting meat or dairy products with plant-based substitutes has small and heterogeneous effects on diet quality and nutrient security: a simulation study in French adults (INCA3). J Nutr 151, 24352445.CrossRefGoogle ScholarPubMed
Vatanparast, H, Islam, N, Shafiee, M, et al. (2020) Increasing plant-based meat alternatives and decreasing red and processed meat in the diet differentially affect the diet quality and nutrient intakes of Canadians. Nutrients 12, 2034.CrossRefGoogle ScholarPubMed
Brazil (2011) Ministry of Health of Brazil. II Reunião Ordinária da Comissão Interinstitucional para Implementação, Acompanhamento e Monitoramento das Ações de Fortificação de Farinhas de Trigo, Milho e de seus Subprodutos. (II Ordinary Meeting of the Interinstitutional Commission for the Implementation, Accompaniment and Monitoring of Actions for the Fortification of Wheat Flours, Corn and Their Subproducts). http://189.28.128.100/dab/docs/portaldab/documentos/2_reuniao_ordinaria.pdf (accessed October 2022).Google Scholar
Brazil (2020) Brazilian Health Regulatory Agency. Relatório do Monitoramento da Fortificação de Farinhas de Trigo e Milho com Ferro e Ácido Fólico (Monitoring Report on Wheat and Corn Flour Fortification with Iron and Folic Acid). https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/monitoramento/programas-nacionais-de-monitoramento-de-alimentos/RelatrioFortificaodeFarinhas2019.pdf (accessed October 2022).Google Scholar
Brazil (2017) Brazilian Health Regulatory Agency. Dispõe sobre o enriquecimento das farinhas de trigo e de milho com ferro e ácido fólico (Disposes about the Fortification of Wheat Flour and Corn Flour with Iron and Folic Acid). Diário Oficial da União, Poder Executivo; Brasília. Resolução RDC nº 150. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2017/rdc0150_19_04_2017.pdf (accessed June 2022).Google Scholar
Lopes, TS, Luiz, RR, Hoffman, DJ, et al. (2016) Misreport of energy intake assessed with food records and 24-h recalls compared with total energy expenditure estimated with DLW (published correction appears in Eur J Clin Nutr 2017 71:680). Eur J Clin Nutr 70, 12591264.CrossRefGoogle Scholar
Brazil (2005) Ministry of Health of Brazil. Manual Operacional: Programa Nacional de Suplementação de Ferro (Operational Manual of the National Iron Supplementation Program). Brasília: Ministério da Saúde. https://bvsms.saude.gov.br/bvs/publicacoes/manual_suplementacao_ferro_condutas_gerais.pdf (accessed June 2022).Google Scholar
Armah, SM, Carriquiry, AL & Reddy, MB (2015) Total iron bioavailability from the US diet is lower than the current estimate. J Nutr 145, 26172621.CrossRefGoogle Scholar
De Carli, E, Dias, GC, Morimoto, JM, et al. (2018) Dietary iron bioavailability: agreement between estimation methods and association with serum ferritin concentrations in women of childbearing age. Nutrients 10, 650.CrossRefGoogle ScholarPubMed
Supplementary material: File

De Carli et al. supplementary material

Tables S1-S3

Download De Carli et al. supplementary material(File)
File 28.9 KB