Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T23:59:10.472Z Has data issue: false hasContentIssue false

Contribution of rumen protozoa to duodenal flow of nitrogen, conjugated linoleic acid and vaccenic acid in steers fed silages differing in their water-soluble carbohydrate content

Published online by Cambridge University Press:  08 March 2007

David R. Yáñez-Ruiz*
Affiliation:
Institute of Rural Sciences, University of Wales Aberystwyth, Llanbadarn Campus, Aberystwyth SY23 3AL, UK
Nigel D. Scollan
Affiliation:
Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3ED, UK
Roger J. Merry
Affiliation:
Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3ED, UK
Charles J. Newbold
Affiliation:
Institute of Rural Sciences, University of Wales Aberystwyth, Llanbadarn Campus, Aberystwyth SY23 3AL, UK
*
*Corresponding author: Dr David R. Yáñez-Ruiz, fax +44 1970 611264, email dyy@aber.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present experiment was designed to estimate the quantitative contribution of rumen protozoa to the total N, conjugated linoleic acid (CLA) and vaccenic acid (VA; trans-11–18:1) flow to the duodenum of steers fed two silage diets: control silage (CS) and silage high in water-soluble carbohydrates (HS). Protozoal duodenal flows were estimated using a real-time PCR assay to quantify the genes encoding protozoal 18S ribosomal RNA. Denaturing gradient gel electrophoresis was used to confirm that the rumen protozoa populations were similar to the protozoal population flowing to the duodenum. Estimated duodenal flow of protozoal N was 14·2 and 18·2 g/d (P>0·05) for animals fed the CS and HS diets respectively. Protozoal flow thus represented between 12 and 15 % of the total N duodenal flow. In terms of fatty acid flow, protozoa accounted for between 30 and 43 % of the CLA and 40 % of the VA reaching the duodenum. The contribution of protozoa to 16:0 and 18:0 flows to the duodenum was less than 20 and 10 %, respectively. These results show that the fatty acids within protozoa make up a significant proportion of the CLA and VA reaching the duodenum of ruminants.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Abaza, MA, Abou Akkada, AR & El Shazly, K (1975) Effect of rumen protozoa on dietary lipid in sheep. J Agric Sci 85, 135143.CrossRefGoogle Scholar
Bauman, DEL, Baumgard, BA, Corl, BA & Griinari, JM (1999) Biosynthesis of conjugated linoleic acids in ruminants. Proc Am Soc Anim Sci. Accesssed June 2002. http://www.asas.org/jas/symposia/proceedings/0937.pdf.CrossRefGoogle Scholar
Blankson, H, Stakkestad, JA, Fagertun, H, Thom, E, Wadstein, J & Gudmundsen, O (2000) Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr 130, 29432948.Google ScholarPubMed
Chalupa, A & Kutches, AJ (1968) Biohydrogenation of linoleic 1-C14 acid by rumen protozoa. J Anim Sci 27, 15021508.CrossRefGoogle Scholar
Coleman, GS (1979) The role of rumen protozoa in the metabolism of ruminants given tropical feed. Trop Anim Prod 4, 199213.Google Scholar
Cook, LJ, Scott, TW, Faichney, GJ & Davies, HL (1972) Fatty acid interrelationships in plasma, liver, muscle and adipose tissues of cattle fed safflower oil protected from ruminal hydrogenation. Lipids 7, 8389.CrossRefGoogle ScholarPubMed
Cozzi, G, Bittante, G & Polan, CE (1993) Comparison of fibrous materials as modifiers of in-situ ruminal degradation of corn gluten meal. J Dairy Sci 76, 11061113.CrossRefGoogle Scholar
Dawson, RMC & Kemp, P (1969) The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem J 115, 351352.CrossRefGoogle ScholarPubMed
De la Torre, A, Debiton, E, Durand, D, Chardigny, JM, Berdeaux, O, Loreau, O, Barthomeuf, C, Bauchart, D & Gruffat, D (2005) Conjugated linoleic acid isomers and their conjugated derivatives inhibit growth of human cancer cell lines. Anticancer Res 25, 39433949.Google ScholarPubMed
Dehority, BA (1984) Evaluation of subsampling and fixation procedures used for counting rumen protozoa.. Appl Environ Microbiol 48, 182185..CrossRefGoogle ScholarPubMed
Dehority, BA (2003) Rumen Microbiology. Nottingham, UK: Nottingham University Press.Google Scholar
Devillard, E, McIntosh, FM, Castet, RJ, Wallace, J & Newbold, CJ (2004) Conjugated linleic acid composition of rumen bacterial and protozoal populations. Rep Nutr Develop 44, Suppl. 1. 60.Google Scholar
Dijkstra, J (1994) Simulation of the dynamics of protzoa in the rumen. Br J Nutr 72, 679699.CrossRefGoogle ScholarPubMed
Dijkstra, J, France, J & Davies, DR (1998) Different mathematical approaches to estimating microbial protein supply in ruminants. J Dairy Sci 81, 33703384.CrossRefGoogle ScholarPubMed
Emmanuel, B (1974) On the origin of rumen protozoan fatty acids. Biochim Biophys Acta 337, 404413.CrossRefGoogle ScholarPubMed
Faichney, GJ (1975) The use of markers to partition digestion within gastrointestinal tract of ruminants. In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, IW and Warner, ACI, editors]. University of New England: Armidale, NSW.Google Scholar
Firkins, JL, Allen, S, Oldick, S & Pierre, ST (1998) Modeling ruminal digestibility of carbohydrates and microbial protein flow to the duodenum. J Dairy Sci 81, 33503369.CrossRefGoogle ScholarPubMed
Girard, V & Hawke, JC (1978) The role of holotrichs in the metabolism of dietary linoleic acid in the rumen. Biochim Biophys Acta 528, 404413.Google Scholar
Hall, FJ, West, J & Coleman, GS (1974) Fine structural studies on the digestion of chloroplasts in the rumen ciliate Entodinium caudatum. Tissue Cell 6, 243253.CrossRefGoogle ScholarPubMed
Harfoot, GC & Hazlewood, GP (1997) Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem, pp. 383425 [Hobson, PN and Stewart, CS, editors]. London: Chapman Hall.Google Scholar
Harfoot, GC, Noble, RC & Moore, JH (1973 b) Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Biochem J 132, 829832.CrossRefGoogle ScholarPubMed
Jouany, JP (1995) Effect of rumen protozoa on nitrogen utilization by ruminants. J Nutr 1335S1346S.Google Scholar
Jouany, JP & Lassalas, B (2004) Effect of short-term period (2 months) and long-term period (12 months) of rumen defaunation on CLA synthesis from pure linoleic and linolenic acids. Reprod Nutr Dev 44 Suppl. 1, S63.Google Scholar
Karnati, SKR, Yu, Z, Sylvester, JT, Dehority, BA, Morrison, M & Firkins, JL (2003) Tehcnical note: Specific PCR amplification of protozoal 18S rDNA sequences from DNA extracted from ruminal samples of cows. J Anim Sci 81, 812815.CrossRefGoogle Scholar
Klopfenstein, TJ, Purser, DB & Tyznik, WJ (1966) Effects of defaunation on feed digestibility, rumen metabolism and blood metabolites. J Anim Sci 25, 765773.CrossRefGoogle ScholarPubMed
Kramer, JKG & Zhou, JQ (2001) Conjugated linoleic acid and octadecenoic acids: extraction and isolation of lipids. Eur J Lipid Sci Technol 103, 594600.3.0.CO;2-R>CrossRefGoogle Scholar
Labarca, C & Paigen, K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102, 344352.CrossRefGoogle ScholarPubMed
Lee, MRF, Harris, LJ, Moorby, JM, Humphreys, MO, Theodorou, MK, MacRae, JC & Scollan, ND (2002) Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of water-soluble carbohydrates. Anim Sci 74, 587596.CrossRefGoogle Scholar
Maeda, H, Fujimoto, C, Haruki, Y, Maeda, T, Kokeguchi, S, Petelin, M, Arai, H, Tanimoto, I, Nishimura, F & Takashiba, S (2003) Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol 39, 8186.CrossRefGoogle ScholarPubMed
Michalowski, T, Harmeyer, J & Breves, G (1986) The passage of protozoa from the reticulo-rumen through the omasum of sheep. Br J Nutr 56, 625634.CrossRefGoogle ScholarPubMed
Moon-van der Staay, SY, van Rder Staay, GWM, Javorský, P, Jouany, JP, Michalowski, T, Nsabimana, E, Macheboeuf, D & Kišidayová, S (2002) Diversity of rumen ciliates revealed by 18S ribosomal DNA analysis. Reprod Nutr Develop 42, Suppl.S76.Google Scholar
Ozutsumi, Y, Tajima, K, Takenaka, A & Itabashi, H (2005) The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Biosci Biotechnol Biochem 69, 499506.CrossRefGoogle ScholarPubMed
Punia, BS, Leibholz, J & Faichney, GJ (1992) Rate of production of protozoa in the rumen and the flow of protozoal nitrogen to the duodenum in sheep and cattle given a pelleted diet of lucerne hay and barley. J Agric Sci (Camb) 118, 229236.CrossRefGoogle Scholar
Regensbogenova, MP, Pristas, P, Javorsky Hackstein, JHP, Newbold, CJ & McEwan, N (2004) Assesment of ciliates in the sheep rumen by DGGE. Lett Appl Microbiol 39, 144147.CrossRefGoogle Scholar
Reynal, SM, Broderick, GA, Ahvenjarvi, S & Huhtanen, P (2003) Effect of feeding protein supplements of differing degradability on omasal flow of microbial and undegraded protein. J Dairy Sci 86, 12921305.CrossRefGoogle ScholarPubMed
Shabi, Z, Tagari, H, Murphy, MR, Bruckental, I, Mabjeedh, SJ, Zamwel, S, Celik, K & Arieli, A (2000) Partitinoning of amino acids flowing to the abomasum into feed, bacterial, protozoal, and endogenous fractions. J Dairy Sci 83, 23262334.CrossRefGoogle Scholar
Singh, S & Hawke, JC (1979) The in vitro lipolysis and biohydrogenation of monogalactosyldiglycride by whole rumen content and its fractions. J Sci Food Agric 30, 603612.CrossRefGoogle ScholarPubMed
Steinhour, WD, Stokes, MR, Clark, JH, Rogers, JA, Davis, CL & Nelson, DR (1982) Estimation of the proportion of non-ammonia-nitrogen reaching the lower gut of the ruminant derived from bacterial and protozoal nitrogen. Br J Nutr 48, 417431.CrossRefGoogle ScholarPubMed
Stewart, CS, Flint, HJ & Bryant, MP (1997) The rumen bacteria. In The Rumen Microbial Ecosystem, pp. 1072 [Hobson, PN and Stewart, CS, editors]. London: Chapman Hall.CrossRefGoogle Scholar
Sylvester, JT, Karnati, SK, Yu, Z, Morrrison, M & Firkins, JL (2004) Development of an assay to quantify ciliate protozoal biomass in cows using real-time PCR. J Nutr 134, 33783384.Google Scholar
Sylvester, JT, Karnati, SK, Yu, Z, Newbold, CJ & Firkins, JL (2005) Evaluation of a real time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J Dairy Sci 88, 20832095.CrossRefGoogle ScholarPubMed
Thomas, (1977) An automated procedure for the determination of soluble carbohydrates in herbage.. J Sci Food Agric 28, 639642.CrossRefGoogle Scholar
Toomey, D, Harhen, B, Roche, HM, Fitzgerald, D & Belton, O (2005) Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 187, 4049.CrossRefGoogle ScholarPubMed
Van Soest, PJ, Robertson, JB & Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J Dairy Sci 74, 35833597.CrossRefGoogle ScholarPubMed
Van Soest, PJ & Wine, RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant and cell wall constituents. J Assoc Off Anal Chem 50, 5055.Google Scholar
Volden, HLT, Mydland, T & Harstad, OM (1999) Chemical composition of protozoal and bacterial fractions isolated from ruminal contents of dairy cows fed diets differing in nitrogen supplementation. Acta Agric Scand A Anim Sci 49, 235244.Google Scholar
Wahle, KWJ, Steven, DH & Rotondo, D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health?. Prog Lipid Res 43, 553587.CrossRefGoogle ScholarPubMed
Williams, AG & Coleman, GS (1992) The Rumen Protozoa. New York: Springer-Verlag.CrossRefGoogle Scholar
Williams, CHD, David, DJ & Iisma, O (1962) The determination of chromic acid oxide in feces samples by atomic absorption spectrophotmetry. J Agric Sci 59, 381385.Google Scholar
Wright, DE (1959) Hydrogenation of lipids by rumen protozoa. Nature 184, 875876.CrossRefGoogle ScholarPubMed
Zhang, H, Guo, Y & Yuan, J (2005) Conjugated linoleic acid enhanced the immune function in broiler chicks. Br J Nutr 94, 746752.Google Scholar