Hostname: page-component-cd4964975-ppllx Total loading time: 0 Render date: 2023-03-28T07:58:18.511Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Validity and reproducibility of a FFQ for assessing dietary intake among residents of northeast China: northeast cohort study of China

Published online by Cambridge University Press:  01 August 2022

Qi Cui
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
Yang Xia
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
Yashu Liu
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
Yifei Sun
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
Kang Ye
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
Wenjie Li
Affiliation:
The School of Public Health, China Medical University, Shenyang, People’s Republic of China
Qijun Wu
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
Qing Chang
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
Yuhong Zhao*
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
*
* Corresponding author: Dr Y. Zhao, email zhaoyuhong@sj-hospital.org

Abstract

The study was to evaluate the reproducibility and validity of the FFQ for residents of northeast China. A total of 131 participants completed two FFQ (FFQ1 and FFQ2) within a 3-month period, 125 participants completed 8-d weighed diet records (WDR) and 112 participants completed blood biomarker testing. Reproducibility was measured by comparing nutrient and food intake between FFQ1 and FFQ2. The validity of the FFQ was assessed by WDR and the triad method. The Spearman correlation coefficients (SCC) and intraclass correlation coefficients (ICC) for reproducibility ranged from 0·41 to 0·69 (median = 0·53) and from 0·18 to 0·68 (median = 0·53) for energy and nutrients and from 0·37 to 0·73 (median = 0·59) and from 0·33 to 0·86 (median = 0·60) for food groups, respectively. The classifications of same or adjacent quartiles ranged from 73·64 to 93·80 % for both FFQ. The crude SCC between the FFQ and WDR ranged from 0·27 to 0·55 (median = 0·46) for the energy and nutrients and from 0·26 to 0·70 (median = 0·52) for food groups, and classifications of the same or adjacent quartiles ranged from 65·32 to 86·29 %. The triad method indicated that validation coefficients for the FFQ were above 0·3 for most nutrients, which indicated a moderate or high level of validity. The FFQ that was developed for residents of northeast China for the Northeast Cohort Study of China is reliable and valid for assessing the intake of most foods and nutrients.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors have contributed equally to this work.

References

Chiuve, SE, Rexrode, KM, Spiegelman, D, et al. (2008) Primary prevention of stroke by healthy lifestyle. Circulation 118, 947954.CrossRefGoogle ScholarPubMed
Willett, WC, Sampson, L, Stampfer, MJ, et al. (1985) Reproducibility and validity of a semi-quantitative food frequency questionnaire. Am J Epidemiol 122, 5165.CrossRefGoogle Scholar
Wise, A & Birrell, NM (2002) Design and analysis of food frequency questionnaires – review and novel method. Int J Food Sci Nutr 53, 273279.CrossRefGoogle ScholarPubMed
Fraser, GE (2003) A search for truth in dietary epidemiology. Am J Clin Nutr 78, 521s525s.CrossRefGoogle ScholarPubMed
Li, K, Takezaki, T, Lv, LW, et al. (2005) Reproducibility of a semi-quantitative food frequency questionnaire in Chaoshan area, China. Asian Pac J Cancer Prev 6, 521526.Google ScholarPubMed
Cade, JE, Burley, VJ, Warm, DL, et al. (2004) Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev 17, 522.CrossRefGoogle ScholarPubMed
Willett, W (2013) Nutritional Epidemiology. New York: Oxford University Press.Google Scholar
Yokota, RT, Miyazaki, ES & Ito, MK (2010) Applying the triads method in the validation of dietary intake using biomarkers. Cad Saude Publica 26, 20272037.CrossRefGoogle ScholarPubMed
Zang, J, Luo, B, Chang, S, et al. (2019) Validity and reliability of a food frequency questionnaire for assessing dietary intake among Shanghai residents. Nutr J 18, 30.CrossRefGoogle ScholarPubMed
Tang, Y, Liu, Y, Xu, L, et al. (2015) Validity and reproducibility of a revised semi-quantitative food frequency questionnaire (SQFFQ) for women of age-group 12–44 years in Chengdu. J Health Popul Nutr 33, 5059.Google ScholarPubMed
Chang, C-X & Ho, SC (2009) Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18, 240250.Google Scholar
Ye, Q, Hong, X, Wang, Z, et al. (2016) Reproducibility and validity of an FFQ developed for adults in Nanjing, China. Br J Nutr 115, 887894.CrossRefGoogle ScholarPubMed
Ke, L, Toshiro, T, Fengyan, S, et al. (2005) Relative validity of a semi-quantitative food frequency questionnaire v. 3 d weighed diet records in middle-aged inhabitants in Chaoshan area, China. Asian Pac J Cancer Prev 6, 376381.Google Scholar
Zhang, H, Xia, Y, Chang, Q, et al. (2021) Dietary patterns and associations between air pollution and gestational diabetes mellitus. Environ Int 147, 106347.Google Scholar
Whitton, C, Ho, JCY, Tay, Z, et al. (2017) Relative validity and reproducibility of a food frequency questionnaire for assessing dietary intakes in a multi-ethnic Asian population using 24-h dietary recalls and biomarkers. Nutrients 9, 1059.CrossRefGoogle Scholar
Xia, Y, Liu, Y, Zhang, S, et al. (2021) Associations between different types and sources of dietary fibre intake and depressive symptoms in a general population of adults: a cross-sectional study. Br J Nutr 14, 12811290.CrossRefGoogle Scholar
Gu, Y, Zhang, S, Wang, J, et al. (2020) Relationship between consumption of raw garlic and handgrip strength in a large-scale adult population. Clin Nutr 39, 12341241.CrossRefGoogle Scholar
Akizawa, Y, Koizumi, S, Itokawa, Y, et al. (2008) Daily magnesium intake and serum magnesium concentration among Japanese people. J Epidemiol 18, 151159.CrossRefGoogle ScholarPubMed
Johansson, I, Van Guelpen, B, Hultdin, J, et al. (2010) Validity of food frequency questionnaire estimated intakes of folate and other B vitamins in a region without folic acid fortification. Eur J Clin Nutr 64, 905913.CrossRefGoogle Scholar
Sam, CH, Skeaff, S & Skidmore, PM (2014) A comprehensive FFQ developed for use in New Zealand adults: reliability and validity for nutrient intakes. Public Health Nutr 17, 287296.CrossRefGoogle ScholarPubMed
Shiraishi, M, Haruna, M, Matsuzaki, M, et al. (2013) Validity of a diet history questionnaire estimating β-carotene, vitamin C and α-tocopherol intakes in Japanese pregnant women. Int J Food Sci Nutr 64, 694699.CrossRefGoogle ScholarPubMed
Whitton, C, Ho, JCY, Tay, Z, et al. (2017) Relative validity and reproducibility of a food frequency questionnaire for assessing dietary intakes in a multi-ethnic Asian population using 24-h dietary recalls and biomarkers. Nutrients 9, 1059.CrossRefGoogle Scholar
Lampe, JW, Huang, Y, Neuhouser, ML, et al. (2017) Dietary biomarker evaluation in a controlled feeding study in women from the women’s health initiative cohort. Am J Clin Nutr 105, 466475.CrossRefGoogle Scholar
YYPUM Press (2018) Chinese Food Composition Table.Google Scholar
Lilleyman, JS (1992) Practical statistics for medical research. J Clin Pathol 45, 368.CrossRefGoogle Scholar
Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S.CrossRefGoogle ScholarPubMed
Rosner, B & Willett, WC (1988) Interval estimates for correlation coefficients corrected for within-person variation: implications for study design and hypothesis testing. Am J Epidemiol 127, 377386.CrossRefGoogle ScholarPubMed
Cade, J, Thompson, R, Burley, V, et al. (2002) Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr 5, 567587.CrossRefGoogle ScholarPubMed
Kaaks, RJ (1997) Biochemical markers as additional measurements in studies of the accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr 65, 1232s1239s.CrossRefGoogle ScholarPubMed
Zhang, B, Wang, P, Chen, CG, et al. (2010) Validation of an FFQ to estimate the intake of fatty acids using erythrocyte membrane fatty acids and multiple 3 d dietary records. Public Health Nutr 13, 15461552.CrossRefGoogle Scholar
Zang, J, Luo, B, Chang, S, et al. (2019) Validity and reliability of a food frequency questionnaire for assessing dietary intake among Shanghai residents. Nutr J 18, 30.CrossRefGoogle ScholarPubMed
Shu, XO, Yang, G, Jin, F, et al. (2004) Validity and reproducibility of the food frequency questionnaire used in the Shanghai women’s health study. Eur J Clin Nutr 58, 1723.CrossRefGoogle ScholarPubMed
Cui, Q, Xia, Y, Wu, Q, et al. (2021) A meta-analysis of the reproducibility of food frequency questionnaires in nutritional epidemiological studies. Int J Behav Nutr Phys Act 18, 118.CrossRefGoogle ScholarPubMed
Baudry, J, Ducros, V, Druesne-Pecollo, N, et al. (2018) Some differences in nutritional biomarkers are detected between consumers and nonconsumers of organic foods: findings from the BioNutriNet project. Curr Dev Nutr 3, nzy090.Google ScholarPubMed
Villegas, R, Yang, G, Liu, D, et al. (2007) Validity and reproducibility of the food-frequency questionnaire used in the Shanghai men’s health study. Br J Nutr 97, 9931000.CrossRefGoogle ScholarPubMed
Zhuang, M, Yuan, Z, Lin, L, et al. (2012) Reproducibility and relative validity of a food frequency questionnaire developed for adults in Taizhou, China. PLOS ONE 7, e48341.CrossRefGoogle ScholarPubMed
Imaeda, N, Fujiwara, N, Tokudome, Y, et al. (2002) Reproducibility of a semi-quantitative food frequency questionnaire in Japanese female dietitians. J Epidemiol 12, 4553.CrossRefGoogle ScholarPubMed
Kristal, AR, Feng, Z, Coates, RJ, et al. (1997) Associations of race/ethnicity, education, and dietary intervention with the validity and reliability of a food frequency questionnaire: the women’s health trial feasibility study in minority populations. Am J Epidemiol 146, 856869.CrossRefGoogle ScholarPubMed
Chiu, TH, Huang, HY, Chen, KJ, et al. (2014) Relative validity and reproducibility of a quantitative FFQ for assessing nutrient intakes of vegetarians in Taiwan. Public Health Nutr 17, 14591466.CrossRefGoogle ScholarPubMed
Fallaize, R, Forster, H, Macready, AL, et al. (2014) Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-d weighed food record. J Med Internet Res 16, e190.CrossRefGoogle Scholar
Lee, Y & Park, K (2016) Reproducibility and validity of a semi-quantitative FFQ for trace elements. Br J Nutr 116, 864873.CrossRefGoogle ScholarPubMed
Cui, Q, Xia, Y, Wu, Q, et al. (2021) Validity of the food frequency questionnaire for adults in nutritional epidemiological studies: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 14, 119.Google Scholar
Leon Guerrero, RT, Chong, M, Novotny, R, et al. (2015) Relative validity and reliability of a quantitative food frequency questionnaire for adults in Guam. Food Nutr Res 59, 26276.CrossRefGoogle ScholarPubMed
Zulkifli, SN & Yu, SM (1992) The food frequency method for dietary assessment. J Am Diet Assoc 92, 681685.CrossRefGoogle ScholarPubMed
Yuan, C, Spiegelman, D, Rimm, EB, et al. (2017) Validity of a dietary questionnaire assessed by comparison with multiple weighed dietary records or 24-h recalls. Am J Epidemiol 185, 570584.CrossRefGoogle ScholarPubMed
Bae, YJ, Choi, HY, Sung, MK, et al. (2010) Validity and reproducibility of a food frequency questionnaire to assess dietary nutrients for prevention and management of metabolic syndrome in Korea. Nutr Res Pract 4, 121127.CrossRefGoogle ScholarPubMed
Haftenberger, M, Heuer, T, Heidemann, C, et al. (2010) Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr J 9, 36.CrossRefGoogle ScholarPubMed
Zack, RM, Irema, K, Kazonda, P, et al. (2018) Validity of an FFQ to measure nutrient and food intakes in Tanzania. Public Health Nutr 21, 22112220.CrossRefGoogle ScholarPubMed
Beck, KL, Houston, ZL, McNaughton, SA, et al. (2018) Development and evaluation of a food frequency questionnaire to assess nutrient intakes of adult women in New Zealand. Nutr Diet 77, 253259.CrossRefGoogle ScholarPubMed
Verger, EO, Armstrong, P, Nielsen, T, et al. (2017) Dietary assessment in the metacardis study: development and relative validity of an online food frequency questionnaire. J Acad Nutr Diet 117, 878888.CrossRefGoogle ScholarPubMed
Hollis, JL, Craig, LC, Whybrow, S, et al. (2017) Assessing the relative validity of the Scottish collaborative group FFQ for measuring dietary intake in adults. Public Health Nutr 20, 449455.CrossRefGoogle Scholar
Silva-Jaramillo, KM, Neutzling, MB & Drehmer, M (2015) FFQ for the adult population of the capital of Ecuador (FFQ-Quito): development, reliability and validity. Public Health Nutr 18, 25402549.CrossRefGoogle ScholarPubMed
Hodson, L, Skeaff, CM & Fielding, BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47, 348380.CrossRefGoogle ScholarPubMed
Andersen, LF, Solvoll, K, Johansson, LR, et al. (1999) Evaluation of a food frequency questionnaire with weighed records, fatty acids, and α-tocopherol in adipose tissue and serum. Am J Epidemiol 150, 7587.CrossRefGoogle ScholarPubMed
Kabagambe, EK, Baylin, A, Allan, DA, et al. (2001) Application of the method of triads to evaluate the performance of food frequency questionnaires and biomarkers as indicators of long-term dietary intake. Am J Epidemiol 154, 11261135.CrossRefGoogle ScholarPubMed
da Silva, DCG, Segheto, W, de Lima, MFC, et al. (2018) Using the method of triads in the validation of a food frequency questionnaire to assess the consumption of fatty acids in adults. J Hum Nutr Diet 31, 8595.CrossRefGoogle ScholarPubMed
Sartorelli, DS, Nishimura, RY, Castro, GS, et al. (2012) Validation of a FFQ for estimating n-3, n-6 and trans fatty acid intake during pregnancy using mature breast milk and food recalls. Eur J Clin Nutr 66, 12591264.CrossRefGoogle Scholar
Patterson, AC, Hogg, RC, Kishi, DM, et al. (2012) Biomarker and dietary validation of a Canadian food frequency questionnaire to measure eicosapentaenoic and docosahexaenoic acid intakes from whole food, functional food, and nutraceutical sources. J Acad Nutr Diet 112, 10051014.CrossRefGoogle ScholarPubMed
Ingram, MA, Stonehouse, W, Russell, KG, et al. (2012) The New Zealand PUFA semi-quantitative food frequency questionnaire is a valid and reliable tool to assess PUFA intakes in healthy New Zealand adults. J Nutr 142, 19681974.CrossRefGoogle Scholar
Ocke, MC, Bueno-de-Mesquita, HB, Goddijn, HE, et al. (1997) The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups. Int J Epidemiol 26, Suppl. 1, S37S48.CrossRefGoogle ScholarPubMed
Supplementary material: File

Cui et al. supplementary material

Tables S1-S5

Download Cui et al. supplementary material(File)
File 163 KB