Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.217 Render date: 2021-11-28T16:02:44.799Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Trends in food consumption by degree of processing and diet quality over 17 years: results from the Framingham Offspring Study

Published online by Cambridge University Press:  19 February 2021

Filippa Juul
Affiliation:
Department of Public Health Policy and Management, School of Global Public Health, New York University, New York, USA
Yong Lin
Affiliation:
Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, New Brunswick, NJ, USA Biometrics Division, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
Andrea L. Deierlein
Affiliation:
Program of Public Health Nutrition, School of Global Public Health, New York University, New York, USA Department of Population Health, Grossman School of Medicine, New York University, New York, USA
Georgeta Vaidean
Affiliation:
School of Pharmacy and Health Sciences, Fairleigh Dickinson University, Teaneck, NJ, USA
Niyati Parekh*
Affiliation:
Program of Public Health Nutrition, School of Global Public Health, New York University, New York, USA Department of Population Health, Grossman School of Medicine, New York University, New York, USA Rory Meyers College of Nursing, New York University, New York, USA
*
*Corresponding author: Niyati Parekh, email niyati.parekh@nyu.edu

Abstract

Ultraprocessed foods provide the majority of energy content in the American diet, yet little is known regarding consumption trends over time. We determined trends in diet processing level and diet quality from 1991 to 2008 within the prospective Framingham Offspring Cohort. Dietary intakes were collected by FFQ quadrennially 1991–2008 (total of four examinations). The analytical sample included 2893 adults with valid dietary data for ≥3 examinations (baseline mean age = 54 years). Based on the NOVA framework, we classified foods as: unprocessed/minimally processed foods; processed culinary ingredients (salt/sugar/fats/oils); and processed foods and ultraprocessed foods. We evaluated diet quality using the Dietary Guidelines for Americans Adherence Index (DGAI) 2010. Trends in consumption of foods within each processing level (servings/d) and diet quality over the four examinations were evaluated using mixed effects models with subject-specific random intercepts. Analyses were stratified by sex, BMI (<25 kg/m2, 25–29·9 kg/m2, ≥30 kg/m2) and smoking status. Over 17 years of follow-up, ultraprocessed food consumption decreased from 7·5 to 6·0 servings/d and minimally processed food consumption decreased from 11·9 to 11·3 servings/d (P trend < 0·001). Changes in intakes of processed foods, culinary ingredients and culinary preparations were minimal. Trends were similar by sex, BMI and smoking status. DGAI-2010 score increased from 60·1 to 61·5, P < 0·001. The current study uniquely describes trends in diet processing level in an ageing US population, highlighting the longstanding presence of ultraprocessed foods in the American diet. Given the poor nutritional quality of ultraprocessed foods, public health efforts should be designed to limit their consumption.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moubarac, JC, Batal, M, Louzada, ML, et al. (2017) Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 108, 512520.CrossRefGoogle ScholarPubMed
Julia, C, Martinez, L, Alles, B, et al. (2017) Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Sante study. Public Health Nutr 111.Google ScholarPubMed
Rauber, F, da Costa Louzada, ML, Steele, EM, et al. (2018) Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 10, 587.CrossRefGoogle Scholar
Martinez Steele, E, Popkin, BM, Swinburn, B, et al. (2017) The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metr 15, 6.CrossRefGoogle ScholarPubMed
Fiolet, T, Srour, B, Sellem, L, et al. (2018) Consumption of ultra-processed foods and cancer risk: results from NutriNet-Sante prospective cohort. BMJ 360, k322.CrossRefGoogle ScholarPubMed
Srour, B, Fezeu, LK, Kesse-Guyot, E, et al. (2019) Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Sante). BMJ 365, l1451.CrossRefGoogle Scholar
Srour, B, Fezeu, LK, Kesse-Guyot, E, et al. (2019) Ultraprocessed food consumption and risk of type 2 diabetes among participants of the Nutrinet-Sante prospective cohort. JAMA Intern Med 180, 283291.CrossRefGoogle Scholar
Mendonca, RD, Lopes, AC, Pimenta, AM, et al. (2017) Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: the seguimiento universidad de navarra project. Am J Hypertens 30, 358366.Google Scholar
Juul, F, Martinez-Steele, E, Parekh, N, et al. (2018) Ultra-processed food consumption and excess weight among US adults. Br J Nutr 120, 90100.CrossRefGoogle ScholarPubMed
Baraldi, LG, Martinez Steele, E, Canella, DS, et al. (2018) Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative cross-sectional study. BMJ Open 8, e020574.CrossRefGoogle ScholarPubMed
Poti, JM, Mendez, MA, Ng, SW, et al. (2015) Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am J Clin Nutr 101, 12511262.CrossRefGoogle ScholarPubMed
Vandevijvere, S, Jaacks, LM, Monteiro, CA, et al. (2019) Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes Rev 20, 1019.CrossRefGoogle ScholarPubMed
Dawber, TR, Meadors, GF & Moore, FE (1951) Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health 41, 279281.CrossRefGoogle ScholarPubMed
Larson, MG, Atwood, LD, Benjamin, EJ, et al. (2007) Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes. BMC Med Genet 8, S5.CrossRefGoogle ScholarPubMed
Kannel, WB, Feinleib, M, McNamara, PM, et al. (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110, 281290.CrossRefGoogle ScholarPubMed
Feinleib, M, Kannel, WB, Garrison, RJ, et al. (1975) The Framingham offspring study. Design and preliminary data. Prev Med 4, 518525.CrossRefGoogle ScholarPubMed
McKeown, NM, Troy, LM, Jacques, PF, et al. (2010) Whole- and refined-grain intakes are differentially associated with abdominal visceral and subcutaneous adiposity in healthy adults: the Framingham Heart Study. Am J Clin Nutr 92, 11651171.CrossRefGoogle ScholarPubMed
Hu, FB, Rimm, E, Smith-Warner, SA, et al. (1999) Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 69, 243249.CrossRefGoogle ScholarPubMed
Rimm, EB, Giovannucci, EL, Stampfer, MJ, et al. (1992) Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 135, 11141126.CrossRefGoogle ScholarPubMed
Wolongevicz, DM, Brown, LS & Millen, BE (2010) Nutrient database development: a historical perspective from the Framingham Nutrition Studies. J Am Diet Assoc 110, 898903.CrossRefGoogle ScholarPubMed
Monteiro, CA, Cannon, G, Levy, RB, et al. (2019) Ultra-processed foods: what they are and how to identify them. Public Health Nutr 22, 936941.CrossRefGoogle Scholar
Nielsen, SJ, Siega-Riz, AM & Popkin, BM (2002) Trends in energy intake in U.S. between 1977 and 1996: similar shifts seen across age groups. Obes Res 10, 370378.CrossRefGoogle ScholarPubMed
Martinez Steele, E, Baraldi, LG, Louzada, ML, et al. (2016) Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 6, e009892.CrossRefGoogle ScholarPubMed
Troy, LM & Jacques, PF (2012) Diets that follow the 2010 Dietary Guidelines for Americans (DGA) are associated with higher intakes of nutrients of concern. FASEB J 26, 267.CrossRefGoogle Scholar
Guenther, PM, Kirkpatrick, SI, Reedy, J, et al. (2014) The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J Nutr 144, 399407.CrossRefGoogle ScholarPubMed
Fogli-Cawley, JJ, Dwyer, JT, Saltzman, E, et al. (2006) The 2005 Dietary Guidelines for Americans Adherence Index: development and application. J Nutr 136, 29082915.CrossRefGoogle ScholarPubMed
Sauder, KA, Proctor, DN, Chow, M, et al. (2015) Endothelial function, arterial stiffness and adherence to the 2010 Dietary Guidelines for Americans: a cross-sectional analysis. Br J Nutr 113, 17731781.CrossRefGoogle ScholarPubMed
Kannel, WB & Sorlie, P (1979) Some health benefits of physical activity: the Framingham Study. Arch Intern Med 139, 857861.CrossRefGoogle ScholarPubMed
Jonker, JT, De Laet, C, Franco, OH, et al. (2006) Physical activity and life expectancy with and without diabetes: life table analysis of the Framingham Heart Study. Diabetes Care 29, 3843.CrossRefGoogle ScholarPubMed
WHO (2020) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. (accessed April 2020).Google Scholar
Millen, BE, Quatromoni, PA, Gagnon, DR, et al. (1996) Dietary patterns of men and women suggest targets for health promotion: the Framingham Nutrition Studies. Am J Health Promot 11, 4252; discussion 52–-43.CrossRefGoogle ScholarPubMed
Marriott, BP, Cole, N & Lee, E (2009) National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr 139, 1228S1235S.CrossRefGoogle ScholarPubMed
Wilson, MM, Reedy, J & Krebs-Smith, SM (2016) American diet quality: where it is, where it is heading, and what it could be. J Acad Nutr Diet 116, 302310.CrossRefGoogle ScholarPubMed
IOM (2010) Strategies to Reduce Sodium Intake in the United States. Washington, DC: Institute of Medicine (US) Committee on Strategies to Reduce Sodium Intake.Google Scholar
Kris-Etherton, PM, Lefevre, M, Mensink, RP, et al. (2012) Trans fatty acid intakes and food sources in the U.S. population: NHANES 1999–2002. Lipids 47, 931940.CrossRefGoogle ScholarPubMed
USDA & HHS (1990) Nutrition and Your Health: Dietary Guidelines forAmericans, 3rd ed. Washington, DC: USDA, US Department of Health and Human Services.Google Scholar
USDA & HHS (2005) Dietary Guidelines for Americans. Washington, DC: USDA, US department of Health and Human Services.Google Scholar
Kuchler, F, Golan, E, Variyam, J, et al. (2005) Obesity policy and the law of unintended consequences. Amber Waves 3, 2633.Google Scholar
Mozaffarian, D & Ludwig, DS (2010) Dietary guidelines in the 21st century--a time for food. JAMA 304, 681682.CrossRefGoogle Scholar
USDA (2015) 2015–2020 Dietary Guidelines for Americans, 8th ed. Washington, DC: US Department of Health and Human Services and US Department of Agriculture.Google Scholar
Giezenaar, C, Chapman, I, Luscombe-Marsh, N, et al. (2016) Ageing is associated with decreases in appetite and energy intake--a meta-analysis in healthy adults. Nutrients 8, 28.CrossRefGoogle ScholarPubMed
Schatzkin, A, Kipnis, V, Carroll, RJ, et al. (2003) A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int J Epidemiol 32, 10541062.CrossRefGoogle Scholar
FAO (2015) Guidelines on the Collection of Information on Food Processing through Food Consumption Surveys. Rome: The Food and Agriculture Organization of the United Nations.Google Scholar
Supplementary material: File

Juul et al. supplementary material

Juul et al. supplementary material

Download Juul et al. supplementary material(File)
File 16 KB
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Trends in food consumption by degree of processing and diet quality over 17 years: results from the Framingham Offspring Study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Trends in food consumption by degree of processing and diet quality over 17 years: results from the Framingham Offspring Study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Trends in food consumption by degree of processing and diet quality over 17 years: results from the Framingham Offspring Study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *