Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-9qwsl Total loading time: 0.443 Render date: 2023-02-04T10:15:20.697Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Quantitative risk–benefit assessment of Portuguese fish and other seafood species consumption scenarios

Published online by Cambridge University Press:  07 December 2021

Catarina Carvalho*
Affiliation:
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
Daniela Correia
Affiliation:
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
Milton Severo
Affiliation:
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
Cláudia Afonso
Affiliation:
Division of Aquaculture, Upgrading, and Bioprospecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Algés, Portugal Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
Narcisa M. Bandarra
Affiliation:
Division of Aquaculture, Upgrading, and Bioprospecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Algés, Portugal Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
Susana Gonçalves
Affiliation:
Division of Aquaculture, Upgrading, and Bioprospecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Algés, Portugal
Helena M. Lourenço
Affiliation:
Division of Aquaculture, Upgrading, and Bioprospecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Algés, Portugal Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
Maria Graça Dias
Affiliation:
Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP (INSA, IP), Lisboa, Portugal
Luísa Oliveira
Affiliation:
Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP (INSA, IP), Lisboa, Portugal
Pedro Nabais
Affiliation:
Divisão de Riscos Alimentares, Autoridade de Segurança Alimentar e Económica, Lisboa, Portugal
Paulo Carmona
Affiliation:
Divisão de Riscos Alimentares, Autoridade de Segurança Alimentar e Económica, Lisboa, Portugal
Sarogini Monteiro
Affiliation:
Divisão de Riscos Alimentares, Autoridade de Segurança Alimentar e Económica, Lisboa, Portugal
Marta Borges
Affiliation:
Divisão de Alimentação Humana, Direção-Geral de Alimentação e Veterinária, Lisboa, Portugal
Carla Lopes
Affiliation:
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
Duarte Torres
Affiliation:
EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
*
*Corresponding author: Catarina Carvalho, email catarina.carvalho@ispup.up.pt

Abstract

Portugal has high fish/seafood consumption, which may have both risks and benefits. This study aims to quantify the net health impact of hypothetical scenarios of fish/seafood consumption in the Portuguese population using a risk–benefit assessment methodology. Consumption data from the National Food, Nutrition and Physical Activity Survey 2015–2016 (n 5811) were used to estimate the mean exposure to methylmercury and EPA + DHA in the current and the alternative scenarios considered. Alternative scenarios (alt) were modelled using probabilistic approaches to reflect substitutions from the current consumption in the type of fish/seafood (alt1: excluding predatory fishes; alt2: including only methylmercury low-level fishes) or in the frequency of weekly fish/seafood consumption (alt3 to alt6: 1, 3, 5 or 7 times a week, replacing fish/seafood meals with meat or others). The overall health impact of these scenarios was quantified using disability-adjusted life years (DALY). In the Portuguese population, about 11 450 DALY could be prevented each year if the fish/seafood consumption increased to a daily basis. However, such a scenario would result in 1398 extra DALY considering the consumption by pregnant women and the respective risk on fetal neurodevelopment. Our findings support a recommendation to increase fish/seafood consumption up to 7 times/week. However, for pregnant women and children, special considerations must be proposed to avoid potential risks on fetal neurodevelopment due to methylmercury exposure.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

European Commission (2018) Facts and Figures on the Common Fisheries Policy : Basic Statistical Data : 2018 Edition. https://op.europa.eu/en/publication-detail/-/publication/cda10e39-ba77-11ea-811c-01aa75ed71a1 (accessed March 2021).Google Scholar
EFSA (2020) EFSA Comprehensive European Food Consumption Database.Google Scholar
Hoekstra, J, Hart, A, Owen, H, et al. (2013) Fish, contaminants and human health: quantifying and weighing benefits and risks. Food Chem Toxicol 54, 1829.CrossRefGoogle ScholarPubMed
Mozaffarian, D & Rimm, EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296, 18851899.Google ScholarPubMed
FAO (2011) Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. January 2010. FAO Fish. Aquaculture Report no. 978. https://apps.who.int/iris/handle/10665/44666 (accessed March 2021).Google Scholar
EFSA (2015) Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J 13, 136.Google Scholar
Cardoso, C, Bernardo, I, Bandarra, NM, et al. (2018) Portuguese preschool children: benefit (EPA+DHA and Se) and risk (MeHg) assessment through the consumption of selected fish species. Food Chem Toxicol 115, 306314.CrossRefGoogle ScholarPubMed
Afonso, C, Bernardo, I, Bandarra, NM, et al. (2019) The implications of following dietary advice regarding fish consumption frequency and meal size for the benefit (EPA + DHA and Se) versus risk (MeHg) assessment. Int J Food Sci Nutr 70, 623637.CrossRefGoogle ScholarPubMed
Cardoso, C, Bandarra, N, Lourenço, H, et al. (2010) Methylmercury Risks and EPA + DHA Benefits Associated with Seafood Consumption in Europe. Risk Anal 30, 827840.CrossRefGoogle ScholarPubMed
EFSA (2014) Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. EFSA J 12, 3761.CrossRefGoogle Scholar
Clarkson, TW & Magos, L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36, 609662.CrossRefGoogle ScholarPubMed
Farina, M, Rocha, JBT & Aschner, M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89, 555563.CrossRefGoogle ScholarPubMed
EFSA (2012) Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J 10, 2985.Google Scholar
Thomsen, ST, Pires, SM, Devleesschauwer, B, et al. (2018) Investigating the risk-benefit balance of substituting red and processed meat with fish in a Danish diet. Food Chem Toxicol 120, 5063.CrossRefGoogle Scholar
Wang, C, Harris, WS, Chung, M, et al. (2006) n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 84, 517.CrossRefGoogle Scholar
Nesheim, MC & Yaktine, AL (2007) Seafood Choices: Balancing Benefits and Risks. Seafood Choices Balanc Benefits and Risks. https://doi.org/10.17226/11762 (accessed March 2021).Google Scholar
USDA (2009) Report of Quantitative Risk and Benefit Assessment of Consumption of Commercial Fish, Focusing on Fetal Neurodevelopment Effects (Measured by Verbal Development in Children) and on Coronary Heart Disease and Stroke in the General Population. Draft report. https://www.federalregister.gov/documents/2009/01/21/E9-1081/report-of-quantitative-risk-and-benefit-assessment-of-commercial-fish-consumption-focusing-on-fetal (accessed March 2021).Google Scholar
Cohen, JT, Bellinger, DC, Connor, WE, et al. (2005) A quantitative risk-benefit analysis of changes in population fish consumption. Am J Prev Med 29, 325334.e6.CrossRefGoogle ScholarPubMed
Lopes, C, Torres, D, Oliveira, A, et al. (2017) National Food, Nutrition and Physical Activity Survey of the Portuguese general population. EFSA Support Publ 14, 1341E.Google Scholar
Lopes, C, Torres, D, Oliveira, A, et al. (2018) National Food, Nutrition, and Physical Activity Survey of the Portuguese General Population (2015–2016): protocol for design and development. JMIR Res Protoc 7, e42.CrossRefGoogle ScholarPubMed
EFSA (2014) Guidance on the EU Menu methodology. EFSA J 12, 3944.Google Scholar
Goios, AC, Severo, M, Lloyd, AJ, et al. (2020) Validation of a new software eAT24 used to assess dietary intake in the adult Portuguese population. Public Health Nutr 23, 30933103.Google ScholarPubMed
ASAE (2020) Plano Nacional de Colheita de Amostras (PNCA) (National Sampling Plan (PNCA)). https://www.asae.gov.pt/cientifico-laboratorial/area-tecnico-cientifica/pnca-plano-nacional-de-colheita-de-amostras.aspx (accessed July 2020).Google Scholar
FAO (2016) FAO/INFOODS Global Food Composition Database for Fish and Shellfish Version 1.0- uFiSh1.0. Rome: FAO.Google Scholar
Haytowitz, DB, Ahuja, JKC, Wu, X, et al. (2018) USDA National Nutrient Database for Standard Reference, Legacy Release. Nutrient Data Laboratory. Washington, DC: Beltsville Human Nutrition Research Center, ARS, USDA.Google Scholar
Jackson, CH (2011) Multi-state models for panel data: the MSM package for R. J Stat Softw 38, 128.CrossRefGoogle Scholar
R Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Lumley, T (2020) Survey: Analysis of Complex Survey Samples. R Package Version 4.0. https://cran.r-project.org/web/packages/survey/index.html (accessed July 2020).Google Scholar
Rubin, DB (1996) Multiple imputation after 18+ years. J Am Stat Assoc 91, 473.CrossRefGoogle Scholar
IARC (2018) Red Meat and Processed Meat. IARC Monographs vol 114. https://publications.iarc.fr/564 (accessed July 2020).Google Scholar
Zeilmaker, MJ, Hoekstra, J, van Eijkeren, JCH, et al. (2013) Fish consumption during child bearing age: a quantitative risk-benefit analysis on neurodevelopment. Food Chem Toxicol 54, 3034.CrossRefGoogle ScholarPubMed
Bouvard, V, Loomis, D, Guyton, KZ, et al. (2015) Carcinogenicity of consumption of red and processed meat. Lancet Oncol 2045, 15991600.CrossRefGoogle Scholar
Chan, DSM, Lau, R, Aune, D, et al. (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One 6, e20456.Google ScholarPubMed
IHME (2018) Global Burden of Disease Study 2017 (GBD 2017) Disability Weights. Seattle: IHME.Google Scholar
American Psychiatric Association (APA) (2000) Diagnostic and Statistical Manual of Mental Disorders, 4th ed. Text Revision (DSM-IV-TR). Am J Psychiatry 152.Google Scholar
WHO (2019) International Statistical Classification of Diseases and Related Health Problems ICD-10, 6th ed. Geneva: WHO.Google Scholar
Instituto Nacional de Estatística (2019) Esperança média de vida à idade x, 2016–2018 (Average life expectancy at age x, 2016–2018). https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0001746&contexto=bd&selTab=tab2&xlang=pt (accessed July 2020).Google Scholar
Instituto Nacional de Estatística (2019) Taxa de fecundidade geral (‰) por Grupo etário; Annual, 2018 (General fertility rate (‰) by age group; anual, 2018). https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0001540&contexto=bd&selTab=tab2 (accessed July 2020).Google Scholar
Instituto Nacional de Estatística (2019) População residente (N.o) por Local de residência (NUTS - 2013), Sexo e Grupo etário; Anual, 2018 (Resident population (Number) by Place of residence (NUTS - 2013), Sex and Age group; Annual, 2018). https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&contecto=pi&indOcorrCod=0008273&selTab=tab0 (accessed July 2020).Google Scholar
Berlin, JA, Longnecker, MP, Epidemiology, S, et al. (1993) Meta-analysis of epidemiologic dose-response data. Epidemiology 4, 218228.CrossRefGoogle ScholarPubMed
Barendregt, JJ & Veerman, JL (2010) Categorical versus continuous risk factors and the calculation of potential impact fractions. J Epidemiol Community Heal 64, 209212.CrossRefGoogle ScholarPubMed
Instituto Nacional de Estatística (2019) Taxa de mortalidade por doenças isquémicas do coração por 100 000 habitantes (N.o) por Local de residência (NUTS - 2013), Sexo e Grupo etário; Anual, 2017 (Mortality rate due to ischemic heart diseases per 100 000 inhabitants (No.) by Place of residence (NUTS - 2013), Sex and Age group; Annual, 2017). https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0003725&contexto=bd&selTab=tab2 (accessed July 2020).Google Scholar
Soerjomataram, I, Lortet-Tieulent, J, Ferlay, J, et al. (2012) Estimating and validating disability-adjusted life years at the global level: a methodological framework for cancer. BMC Med Res Methodol 12, 1.Google ScholarPubMed
Ferlay, J, Ervik, M, Lam, F, et al. (2018) Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer. https://gco.iarc.fr/today (accessed July 2020).Google Scholar
Bray, F, Ferlay, J, Soerjomataram, I, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394424.CrossRefGoogle ScholarPubMed
Ferlay, J, Colombet, M, Soerjomataram, I, et al. (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144, 19411953.CrossRefGoogle ScholarPubMed
Jacobs, S, Sioen, I, Jacxsens, L, et al. (2017) Risk assessment of methylmercury in five European countries considering the national seafood consumption patterns. Food Chem Toxicol 104, 2634.Google ScholarPubMed
Rittenschober, D, Stadlmayr, B, Nowak, V, et al. (2016) Report on the development of the FAO/INFOODS user database for fish and shellfish (uFiSh) – challenges and possible solutions. Food Chem 193, 112120.CrossRefGoogle ScholarPubMed
Khalili Tilami, S & Sampels, S (2018) Nutritional value of fish: lipids, proteins, vitamins, and minerals. Rev Fish Sci Aquac 26, 243253.CrossRefGoogle Scholar
Caetano, T, Branco, V, Cavaco, A, et al. (2019) Risk assessment of methylmercury in pregnant women and newborns in the island of Madeira (Portugal) using exposure biomarkers and food-frequency questionnaires. J Toxicol Environ Heal – Part A Curr Issues 82, 833844.CrossRefGoogle ScholarPubMed
Hibbeln, JR, Davis, JM, Steer, C, et al. (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Obstet Gynecol Surv 62, 437439.CrossRefGoogle Scholar
Fox, TE, Van den Heuvel, EGHM, Atherton, CA, et al. (2004) Bioavailability of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes. Eur J Clin Nutr 58, 343349.CrossRefGoogle ScholarPubMed
Watanabe, C (2002) Modification of mercury toxicity by selenium: practical importance? Tohoku J Exp Med 196, 7177.Google ScholarPubMed
Santos, APM, Mateus, ML, Carvalho, CML, et al. (2007) Biomarkers of exposure and effect as indicators of the interference of selenomethionine on methylmercury toxicity. Toxicol Lett 169, 121128.CrossRefGoogle ScholarPubMed
Ralston, NVC, Ralston, CR & Raymond, LJ (2016) Selenium health benefit values: updated criteria for mercury risk assessments. Biol Trace Elem Res 171, 262269.CrossRefGoogle ScholarPubMed
Ralston, NVC, Blackwell, JL & Raymond, LJ (2007) Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol Trace Elem Res 119, 255268.CrossRefGoogle ScholarPubMed
Bjørklund, G, Aaseth, J, Ajsuvakova, OP, et al. (2017) Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev 332, 3037.Google Scholar
Kosta, L, Byrne, AR & Zelenko, V (1975) Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254, 238239.CrossRefGoogle ScholarPubMed
Falnoga, I, Tušek-Žnidarič, M & Stegnar, P (2006) The influence of long-term mercury exposure on selenium availability in tissues: an evaluation of data. BioMetals 19, 283294.Google ScholarPubMed
Steuerwald, U, Weihe, P, Jørgensen, PJ, et al. (2000) Maternal seafood diet, methylmercury exposure, and neonatal neurologic function. J Pediatr 136, 599605.CrossRefGoogle ScholarPubMed
Choi, AL, Budtz-Jørgensen, E, Jørgensen, PJ, et al. (2008) Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ Res 107, 4552.Google ScholarPubMed
Llop, S, Guxens, M, Murcia, M, et al. (2012) Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in spain: study of potential modifiers. Am J Epidemiol 175, 451465.CrossRefGoogle Scholar
Lemire, M, Fillion, M, Frenette, B, et al. (2011) Selenium from dietary sources and motor functions in the Brazilian Amazon. Neurotoxicol 32, 944953.CrossRefGoogle ScholarPubMed
Türkkan, AU, Cakli, S & Kilinc, B (2008) Effects of cooking methods on the proximate composition and fatty acid composition of seabass (Dicentrarchus labrax, Linnaeus, 1758). Food Bioprod Process 86, 163166.CrossRefGoogle Scholar
Candela, M, Astiasarán, I & Bello, J (1998) Deep-fat frying modifies high-fat fish lipid fraction. J Agric Food Chem 46, 27932796.CrossRefGoogle Scholar
Weber, J, Bochi, VC, Ribeiro, CP, et al. (2008) Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chem 106, 140146.CrossRefGoogle Scholar
Gladyshev, M, Sushchik, N, Gubanenko, G, et al. (2006) Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon. Food Chem 96, 446451.CrossRefGoogle Scholar
Larsen, D, Quek, SY & Eyres, L (2010) Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chem 119, 785790.Google Scholar
Castro-González, I, Maafs-Rodríguez, AG & Pérez-Gil Romo, F (2015) Effect of six different cooking techniques in the nutritional composition of two fish species previously selected as optimal for renal patient’s diet. J Food Sci Technol 52, 41964205.CrossRefGoogle ScholarPubMed
Gladyshev, M, Sushchik, N, Gubanenko, G, et al. (2007) Effect of boiling and frying on the content of essential polyunsaturated fatty acids in muscle tissue of four fish species. Food Chem 101, 16941700.CrossRefGoogle Scholar
Bastías, JM, Balladares, P, Acuña, S, et al. (2017) Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets. PLOS ONE 12, e0180993.CrossRefGoogle ScholarPubMed
de Castro, FAF, Pinheiro Sant’Ana, HM, Campos, FM, et al. (2007) Fatty acid composition of three freshwater fishes under different storage and cooking processes. Food Chem 103, 10801090.CrossRefGoogle Scholar
Thomsen, ST, de Boer, W, Pires, SM, et al. (2019) A probabilistic approach for risk-benefit assessment of food substitutions: a case study on substituting meat by fish. Food Chem Toxicol 126, 7996.CrossRefGoogle ScholarPubMed
Anual, ZF, Maher, W, Krikowa, F, et al. (2018) Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchem J 140, 214221.CrossRefGoogle Scholar
Groth, E (2017) Scientific foundations of fish-consumption advice for pregnant women: epidemiological evidence, benefit-risk modeling, and an integrated approach. Environ Res 152, 386406.CrossRefGoogle Scholar
FDA & EPA (2019) Advice about Eating Fish For Women who are or might become Pregnant, Breastfeeding Mothers, and Young Children. https://www.fda.gov/food/consumers/advice-about-eating-fish (accessed March 2021).Google Scholar
AESAN (2019) Recomendaciones de consumo de pescado (Recommendations on fish and seafood consumption). Agencia Española Segur. Aliment. y Nutr. https://www.aesan.gob.es/AECOSAN/docs/documentos/publicaciones/seguridad_alimentaria/RECOMENDACIONES_consumo_pescado_MERCURIO_AESAN_WEB.PDF (accessed March 2021).Google Scholar
Willett, W, Rockström, J, Loken, B, et al. (2019) Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447492.CrossRefGoogle ScholarPubMed
Poore, J & Nemecek, T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360, 987992.CrossRefGoogle ScholarPubMed
Springmann, M, Wiebe, K, Mason-D’Croz, D, et al. (2018) Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Heal 2, e451e461.CrossRefGoogle ScholarPubMed
Scarborough, P, Appleby, PN, Mizdrak, A, et al. (2014) Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim Change 125, 179192.Google ScholarPubMed
Supplementary material: File

Carvalho et al. supplementary material

Appendix II

Download Carvalho et al. supplementary material(File)
File 569 KB
Supplementary material: File

Carvalho et al. supplementary material

Appendix I

Download Carvalho et al. supplementary material(File)
File 42 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantitative risk–benefit assessment of Portuguese fish and other seafood species consumption scenarios
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Quantitative risk–benefit assessment of Portuguese fish and other seafood species consumption scenarios
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Quantitative risk–benefit assessment of Portuguese fish and other seafood species consumption scenarios
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *