Hostname: page-component-5db6c4db9b-5lzww Total loading time: 0 Render date: 2023-03-24T11:06:16.375Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A prospective epidemiological analysis of controlling nutritional status score with the poor functional outcomes in Chinese patients with haemorrhagic stroke

Published online by Cambridge University Press:  19 August 2021

Bei Lei Zhu
Affiliation:
Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Yan Zhi Wu
Affiliation:
Department of First Clinical Medical School, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Zhong Ming Cai
Affiliation:
Department of First Clinical Medical School, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Cheng-Wei Liao
Affiliation:
Department of First Clinical Medical School, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Le Qiu Sun
Affiliation:
Department of Neurology, Wenzhou Medical Univerisity Affiliated Yueqing Hospital, Wenzhou, Zhejiang, People’s Republic of China
Zhi Peng Liu
Affiliation:
Department of First Clinical Medical School, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Hao Man Chen
Affiliation:
Department of First Clinical Medical School, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Xue Rong Huang
Affiliation:
Department of Neurology, Ruian People’s Hospital, Wenzhou, Zhejiang, People’s Republic of China
Ren Qian Feng
Affiliation:
Department of First Clinical Medical School, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Sheng Lie Ye
Affiliation:
Department of First Clinical Medical School, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Qun Li Lin
Affiliation:
Department of Neurology, Yongjia People’s Hospital, Wenzhou, Zhejiang, People’s Republic of China
Xu Dong Zhou
Affiliation:
Department of Neurology, Pingyang People’s Hospital, Wenzhou, Zhejiang, People’s Republic of China
Liang Wang
Affiliation:
Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
Man Man Zhang*
Affiliation:
Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
Bo Yang*
Affiliation:
School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
*
*Corresponding author: Man Man Zhang, email: zhangmanman@wmu.edu.cn; Bo Yang, email: ybzju@zju.edu.cn
*Corresponding author: Man Man Zhang, email: zhangmanman@wmu.edu.cn; Bo Yang, email: ybzju@zju.edu.cn

Abstract

Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Collaborators GBDS (2019) Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18, 439458.CrossRefGoogle Scholar
Hsieh, DY, Hung, JW, Chang, KC, et al. (2017) Malnutrition in acute stroke patients stratified by stroke severity: a hospital based study. Acta Neurologica Taiwanica 26, 120127.Google ScholarPubMed
Zhang, J, Zhao, X, Wang, A, et al. (2015) Emerging malnutrition during hospitalisation independently predicts poor 3-month outcomes after acute stroke: data from a Chinese cohort. Asia Pac J Clin Nutr 24, 379386.Google ScholarPubMed
Barret, M, Malka, D, Aparicio, T, et al. (2011) Nutritional status affects treatment tolerability and survival in metastatic colorectal cancer patients: results of an AGEO prospective multicenter study. Oncology 81, 395402.CrossRefGoogle ScholarPubMed
Reber, E, Strahm, R, Bally, L, et al. (2019) Efficacy and efficiency of nutritional support teams. J Clin Med 8, 1281.CrossRefGoogle ScholarPubMed
Marco, E, Sanchez-Rodriguez, D, Davalos-Yerovi, VN, et al. (2019) Malnutrition according to ESPEN consensus predicts hospitalizations and long-term mortality in rehabilitation patients with stable chronic obstructive pulmonary disease. Clin Nutr 38, 21802186.CrossRefGoogle ScholarPubMed
Burgos, R, Breton, I, Cereda, E, et al. (2018) ESPEN guideline clinical nutrition in neurology. Clin Nutr 37, 354396.CrossRefGoogle ScholarPubMed
Xiang, W, Chen, X, Ye, W, et al. (2020) Prognostic nutritional index for predicting 3-month outcomes in ischemic stroke patients undergoing thrombolysis. Front Neurol 11, 599.CrossRefGoogle ScholarPubMed
Wang, J, Luo, B, Xie, Y, et al. (2014) Evaluation methods on the nutritional status of stroke patients. Eur Rev Med Pharmacol Sci 18, 39023907.Google ScholarPubMed
Çoban, E (2019) Malnutrition rate in stroke patients on admission. Sisli Etfal Hastanesi Tip Bulteni 53, 272275.Google ScholarPubMed
Sahli, L, Hagenbuch, N, Ballmer, P, et al. (2021) NRS-2002 components, nutritional score and severity of disease score, and their association with hospital length of stay and mortality. Swiss Med wkly 151, w20517.Google ScholarPubMed
Gon, Y, Kabata, D, Kawano, T, et al. (2020) Hematological abnormalities and malnutrition mediate pathway between cancer and outcomes in ischemic stroke patients. J Stroke Cerebrovasc Dis 29, 104943.CrossRefGoogle ScholarPubMed
Kheirouri, S & Alizadeh, M (2021) Prognostic potential of the preoperative Controlling Nutritional Status (CONUT) score in predicting survival of patients with cancer: a systematic review. Adv Nutr 12, 234250.CrossRefGoogle ScholarPubMed
Martineau, J, Bauer, JD, Isenring, E, et al. (2005) Malnutrition determined by the patient-generated subjective global assessment is associated with poor outcomes in acute stroke patients. Clin Nutr 24, 10731077.CrossRefGoogle ScholarPubMed
Wang, PY, Chen, XK, Liu, Q, et al. (2021) Application of four nutritional risk indexes in perioperative management for esophageal cancer patients. J Cancer Res Clin Oncol 10, 113.Google Scholar
Wang, R, He, M, Kang, Y, et al. (2020) Controlling nutritional status (CONUT) score is a predictive marker for patients with traumatic brain injury. Clin Neurol Neurosurg 195, 105909.CrossRefGoogle ScholarPubMed
Dong, X, Tang, S, Liu, W, et al. (2020) Prognostic significance of the Controlling Nutritional Status (CONUT) score in predicting postoperative complications in patients with Crohn’s disease. Sci Rep 10, 19040.CrossRefGoogle ScholarPubMed
Suzuki, S, Kanaji, S, Yamamoto, M, et al. (2019) Controlling Nutritional Status (CONUT) score predicts outcomes of curative resection for gastric cancer in the elderly. World J Surg 43, 10761084.CrossRefGoogle ScholarPubMed
Takamori, S, Toyokawa, G, Taguchi, K, et al. (2017) The controlling nutritional status score is a significant independent predictor of poor prognosis in patients with malignant pleural mesothelioma. Clin Lung Cancer 18, e303e313.CrossRefGoogle ScholarPubMed
Yang, C, Wei, C, Wang, S, et al. (2019) Combined features based on preoperative controlling nutritional status score and circulating tumour cell status predict prognosis for colorectal cancer patients treated with curative resection. Int J Biol Sci 15, 13251335.CrossRefGoogle ScholarPubMed
Naito, H, Nezu, T, Hosomi, N, et al. (2018) Controlling nutritional status score for predicting 3-mo functional outcome in acute ischemic stroke. Nutrition 55, 16.CrossRefGoogle ScholarPubMed
Cai, ZM, Wu, YZ, Chen, HM, et al. (2020) Being at risk of malnutrition predicts poor outcomes at 3 months in acute ischemic stroke patients. Eur J Clin Nutr 74, 796805.CrossRefGoogle ScholarPubMed
Kondrup, J, Rasmussen, HH, Hamberg, O, et al. (2003) Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr 22, 321336.CrossRefGoogle Scholar
WHO (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 854, 1452.Google Scholar
Kim, SE, Lee, H, Kim, JY, et al. (2020) Three-month modified Rankin Scale as a determinant of 5-year cumulative costs after ischemic stroke: an analysis of 11 136 patients in Korea. Neurology 94, e978e991.CrossRefGoogle ScholarPubMed
Nishioka, S, Wakabayashi, H, Nishioka, E, et al. (2016) Nutritional improvement correlates with recovery of activities of daily living among malnourished elderly stroke patients in the convalescent stage: a cross-sectional study. J Acad Nutr Diet 116, 837843.CrossRefGoogle ScholarPubMed
Otsuki, I, Himuro, N, Tatsumi, H, et al. (2020) Individualized nutritional treatment for acute stroke patients with malnutrition risk improves functional independence measurement: a randomized controlled trial. Geriatr Gerontol Int 20, 176182.CrossRefGoogle ScholarPubMed
Nip, WF, Perry, L, McLaren, S, et al. (2011) Dietary intake, nutritional status and rehabilitation outcomes of stroke patients in hospital. J Hum Nutr Dietetics 24, 460469.CrossRefGoogle ScholarPubMed
Ojo, O & Brooke, J (2016) The use of enteral nutrition in the management of stroke. Nutrients 8, 827.CrossRefGoogle ScholarPubMed
Serra, MC (2018) The importance of assessing nutritional status to ensure optimal recovery during the chronic phase of stroke. Stroke Res Treatment 2018, 1297846.CrossRefGoogle ScholarPubMed
Hankey, GJ (2017) The role of nutrition in the risk and burden of stroke: an update of the evidence. Stroke 48, 31683174.CrossRefGoogle Scholar
Poulia, KA, Klek, S, Doundoulakis, I, et al. (2017) The two most popular malnutrition screening tools in the light of the new ESPEN consensus definition of the diagnostic criteria for malnutrition. Clin Nutr 36, 11301135.CrossRefGoogle ScholarPubMed
Sanson, G, Sadiraj, M, Barbin, I, et al. (2020) Prediction of early- and long-term mortality in adult patients acutely admitted to internal medicine: NRS-2002 and beyond. Clin Nutr 39, 10921100.CrossRefGoogle ScholarPubMed
Kondrup, J, Allison, SP, Elia, M, et al. (2003) ESPEN guidelines for nutrition screening 2002. Clin Nutr 22, 415421.CrossRefGoogle ScholarPubMed
Skipper, A, Ferguson, M, Thompson, K, et al. (2012) Nutrition screening tools: an analysis of the evidence. JPEN J Parenter Enteral Nutr 36, 292298.CrossRefGoogle Scholar
Mueller, C, Compher, C & Ellen, DM (2011) A.S.P.E.N. clinical guidelines: nutrition screening, assessment, and intervention in adults. JPEN J Parenter Enteral Nutr 35, 1624.CrossRefGoogle ScholarPubMed
Naito, H, Hosomi, N, Nezu, T, et al. (2020) Prognostic role of the controlling nutritional status score in acute ischemic stroke among stroke subtypes. J Neurol Sci 416, 116984.CrossRefGoogle ScholarPubMed
Shiga, Y, Nezu, T, Hosomi, N, et al. (2020) Effect of tooth loss and nutritional status on outcomes after ischemic stroke. Nutrition 71, 110606.CrossRefGoogle ScholarPubMed
Nakamura, T, Kamiya, K, Matsunaga, A, et al. (2018) Prognostic usefulness of arm circumference and nutritional screening tools in older patients with cardiovascular disease. Nutr Metab Cardiovasc Dis 28, 743748.CrossRefGoogle ScholarPubMed
Kvamme, JM, Olsen, JA, Florholmen, J, et al. (2011) Risk of malnutrition and health-related quality of life in community-living elderly men and women: the Tromso study. Qual Life Res 20, 575582.CrossRefGoogle ScholarPubMed
Tennant, IA, Barnett, AT, Thompson, DS, et al. (2014) Impaired cardiovascular structure and function in adult survivors of severe acute malnutrition. Hypertension 64, 664671.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhu et al. supplementary material

Zhu et al. supplementary material

Download Zhu et al. supplementary material(File)
File 124 KB