Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-p4zth Total loading time: 0.346 Render date: 2021-07-31T08:43:14.579Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The prevalence and influencing factors of anaemia among pre-pregnant women in mainland China: a large population-based, cross-sectional study

Published online by Cambridge University Press:  05 April 2021

Jun Zhao
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Xiaoyue Zhu
Affiliation:
Key Laboratory of Environment Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, People’s Republic of China
Qiaoyun Dai
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Xiang Hong
Affiliation:
Key Laboratory of Environment Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, People’s Republic of China
Hongguang Zhang
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Kaiping Huang
Affiliation:
Key Laboratory of Environment Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, People’s Republic of China
Yuanyuan Wang
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Xueying Yang
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Yue Zhang
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Zuoqi Peng
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Ya Zhang
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Yan Xuan
Affiliation:
Key Laboratory of Environment Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, People’s Republic of China
Qiaomei Wang
Affiliation:
Department of Maternal and Child Health, National Health Commission, No.14 Zhichun Road, Haidian District, Beijing, People’s Republic of China
Haiping Shen
Affiliation:
Department of Maternal and Child Health, National Health Commission, No.14 Zhichun Road, Haidian District, Beijing, People’s Republic of China
Yiping Zhang
Affiliation:
Department of Maternal and Child Health, National Health Commission, No.14 Zhichun Road, Haidian District, Beijing, People’s Republic of China
Donghai Yan
Affiliation:
Department of Maternal and Child Health, National Health Commission, No.14 Zhichun Road, Haidian District, Beijing, People’s Republic of China
Bei Wang
Affiliation:
Key Laboratory of Environment Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, People’s Republic of China
Xu Ma
Affiliation:
National Research Institute for Family Planning, No. 12, Dahuisi Road, Haidian District, Beijing, People’s Republic of China National Human Genetic Resources Center, East Life Science Park Road, Changping District, Beijing, People’s Republic of China
Corresponding

Abstract

Anaemia is a global public health problem affecting women worldwide, and reproductive-age women are at increased risk. We conducted a population-based cross-sectional study analysing the prevalence of overall anaemia and anaemia according to severity in Chinese pre-pregnant women to update current knowledge on anaemia epidemiology. Based on the National Free Preconception Check-up Projects supported by the Chinese government, 5 679 782 women participating in this project in 2017 were included in the present study. The cyanmethemoglobin method was applied to assess Hb concentrations. Univariate and multivariate logistic regressions were applied for associated factors. The prevalence of anaemia among Chinese pre-pregnant women was 21·64 % (mild: 14·10 %, moderate: 7·17 % and severe : 0·37 %). The prevalence of overall and severe anaemia was the highest in Tibet and the lowest in Beijing among thirty-one provinces. Women’s age, region, ethnic origin, educational level, occupation and pregnancy history were all correlated with anaemia. Women with B blood type (adjusted OR (aOR) = 0·89), higher BMI (overweight: aOR = 0·84; obesity: aOR = 0·70) and alcohol consumption (aOR = 0·69) were less likely to have anaemia, while those with rhesus negative blood type (aOR = 1·10), history of anaemia (aOR = 2·60), older age at menarche (aOR = 1·19), heavy menstrual blood loss (aOR = 1·39), longer menstrual period (aOR = 1·09) and shorter menstrual cycle (aOR = 1·08) were more likely to suffer from anaemia. Meat or egg eaters were not significantly associated with severe anaemia. Anaemia is of moderate public health significance among Chinese pre-pregnant women. Interventions should be considered to prevent anaemia to the greatest extent possible to avoid potential harm in this population.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally and were considered co-first authors.

References

World Health Organization (2011) Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. https://apps.who.int/iris/bitstream/handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf (accessed December 2020).Google Scholar
Brunner, C & Wuillemin, WA (2010) Iron deficiency and iron deficiency anemia - symptoms and therapy. Ther Umsch 67, 219223.Google ScholarPubMed
Schumann, K & Solomons, NW (2017) Perspective: what makes it so difficult to mitigate Worldwide Anemia Prevalence? Adv Nutr 8, 401408.CrossRefGoogle ScholarPubMed
World Health Organization (2020) WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. 2020. https://www.who.int/publications-detail/9789240000124 (accessed December 2020).Google Scholar
McLean, E, Cogswell, M, Egli, I, et al. (2009) Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr 12, 444454.CrossRefGoogle ScholarPubMed
Chaparro, CM & Suchdev, PS (2019) Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci 1450, 1531.Google ScholarPubMed
World Health Organization (2017) Nutritional anaemias: tools for effective prevention and control. 2017. https://www.who.int/publications-detail/9789241513067 (accessed December 2020).Google Scholar
Disease, GBD, Injury, I & Prevalence, C (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 12111259.Google Scholar
Cappellini, MD & Motta, I (2015) Anemia in clinical practice-definition and classification: does hemoglobin change with aging? Semin Hematol 52, 261269.CrossRefGoogle ScholarPubMed
Adamu, AL, Crampin, A, Kayuni, N, et al. (2017) Prevalence and risk factors for anemia severity and type in Malawian men and women: urban and rural differences. Popul Health Metr 15, 12.CrossRefGoogle Scholar
Kassebaum, NJ, Collaborators, GBDA (2016) The global Burden of Anemia. Hematol Oncol Clin North Am 30, 247308.CrossRefGoogle ScholarPubMed
Halawi, R, Moukhadder, H, Taher, A (2017) Anemia in the elderly: a consequence of aging? Expert Rev Hematol 10, 327335.CrossRefGoogle ScholarPubMed
Culleton, BF, Manns, BJ, Zhang, J, et al. (2006) Impact of anemia on hospitalization and mortality in older adults. Blood 107, 38413846.CrossRefGoogle ScholarPubMed
Zakai, NA, Katz, R, Hirsch, C, et al. (2005) A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch Intern Med 165, 22142220.CrossRefGoogle Scholar
Stevens, GA, Finucane, MM, De-Regil, LM, (2013) Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Global Health 1, e16e25.CrossRefGoogle ScholarPubMed
Baig-Ansari, N, Badruddin, SH, Karmaliani, R, et al. (2008) Anemia prevalence and risk factors in pregnant women in an urban area of Pakistan. Food Nutr Bull 29, 132139.CrossRefGoogle Scholar
Lander, RL, Hambidge, KM, Westcott, JE, et al. (2019) Pregnant women in four low-middle income countries have a high prevalence of inadequate dietary intakes that are improved by dietary diversity. Nutrients 11, 1560.CrossRefGoogle ScholarPubMed
Yip, R (2000) Significance of an abnormally low or high hemoglobin concentration during pregnancy: special consideration of iron nutrition. Am J Clin Nutr 72, 272S279S.Google ScholarPubMed
Ma, Q, Zhang, S, Liu, J, et al. (2017) Study on the prevalence of severe anemia among non-pregnant women of reproductive age in rural China: a large population-based cross-sectional study. Nutrients 9, 1298.CrossRefGoogle Scholar
Herzog, SA, Leikauf, G, Jakse, H, et al. (2019) Prevalence of anemia in pregnant women in Styria, Austria-A retrospective analysis of mother-child examinations 2006–2014. PLOS ONE 14, e0219703.CrossRefGoogle ScholarPubMed
Zhou, Q, Acharya, G, Zhang, S, et al. (2016) A new perspective on universal preconception care in China. Acta Obstet Gynecol Scand 95, 377381.CrossRefGoogle ScholarPubMed
Zhang, S, Wang, Q & Shen, H (2015) Design of the national free proception health examination project in China. Nat Med J China 95, 162165.Google ScholarPubMed
Liu, J, Zhang, S, Liu, M, (2017) Maternal pre-pregnancy infection with hepatitis B virus and the risk of preterm birth: a population-based cohort study. Lancet Global Health 5, e624e632.CrossRefGoogle ScholarPubMed
Wang, YY, Li, Q, Guo, Y, et al. (2018) Association of long-term exposure to airborne particulate matter of 1 mum or less with Preterm Birth in China. JAMA Pediatr 172, e174872.CrossRefGoogle ScholarPubMed
Zhou, Q, Zhang, S, Wang, Q, et al. (2016) China’s community-based strategy of universal preconception care in rural areas at a population level using a novel risk classification system for stratifying couples preconception health status. BMC Health Serv Res 16, 689.CrossRefGoogle Scholar
Kibret, KT, Chojenta, C, D’Arcy, E, et al. (2019) Spatial distribution and determinant factors of anaemia among women of reproductive age in Ethiopia: a multilevel and spatial analysis. BMJ Open 9, e027276.CrossRefGoogle ScholarPubMed
National Bureau of Statistics of China (2018) The zoning code and the urban-rural division code. http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2018/index.html (accessed December 2020).Google Scholar
Zhou, BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in C (2002) Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci 15, 8396.Google ScholarPubMed
World Health Organization (1998) Guidelines for controlling and monitoring the tobacco epidemic. https://apps.who.int/iris/bitstream/handle/10665/42049/9241545089-eng.pdf (accessed December 2020).Google Scholar
Doi, SA, Al-Zaid, M & Towers, PA (2005) Irregular cycles and steroid hormones in polycystic ovary syndrome. Hum Reprod 20, 24022408.CrossRefGoogle ScholarPubMed
Marnach, ML & Laughlin-Tommaso, SK (2019) Evaluation and management of abnormal uterine bleeding. Mayo Clin Proc 94, 326335.CrossRefGoogle ScholarPubMed
Cappellini, MD & Motta, I (2015) Anemia in clinical practice-definition and classification: does hemoglobin change with aging? Semin Hematol 52, 261269.CrossRefGoogle ScholarPubMed
National Health Commission of the People’s Republic of China (2013) Method for anemia screen WS/T 441–2013 (in Chinese).Google Scholar
World Health Organization (2011) The Global Prevalence of Anaemia in 2011. Geneva, Switzerland: WHO, 126, 54095418.Google Scholar
QZ W, H D, L Y (2017) Analysis on risk factors of anemia during pregnancy in Konggar county, Shannan Prefecture, Tibet Autonomous region. Matern Child Health Care China 32, 49394941.Google Scholar
XL W, XY W (2016) Analysis on related risk factors of prevalence of anemia in pregnancy in romote area. Matern Child Health Care China 31, 49444946.Google Scholar
Kamruzzaman, M, Rabbani, MG & Saw, A (2015) Differentials in the prevalence of anemia among non-pregnant, ever-married women in Bangladesh: multilevel logistic regression analysis of data from the 2011 Bangladesh Demographic and Health Survey. BMC Womens Health 15, 54.CrossRefGoogle ScholarPubMed
Le, CH (2016) The prevalence of anemia and moderate-severe anemia in the USA Population (NHANES 2003–2012). PLOS ONE 11, e0166635.CrossRefGoogle Scholar
Vindhya, J, Nath, A & Murthy, GVS (2019) Prevalence and risk factors of anemia among pregnant women attending a public-sector hospital in Bangalore, South India. J Family Med Prim Care 8, 3743.Google Scholar
Qiuyue, M, Shikun, Z & Jue, L (2018) Anemia status of Chinese rural women of reproductive age in 2012. Natl Med J China 98, 21152119.Google Scholar
Meczekalski, B, Czyzyk, A & Kunicki, M (2016) Fertility in women of late reproductive age: the role of serum anti-Müllerian hormone (AMH) levels in its assessment. J Endocrinol Invest 39, 12591265.CrossRefGoogle ScholarPubMed
Arabyat, R, Arabyat, G & Al-Taani, G (2019) Prevalence and risk factors of anaemia among ever-married women in Jordan. East Mediterr Health J 25, 543552.Google ScholarPubMed
Balarajan, Y, Ramakrishnan, U & Ozaltin, E (2011) Anaemia in low-income and middle-income countries. Lancet 378, 21232135.CrossRefGoogle ScholarPubMed
Seyfizadeh, N, Seyfizadeh, N & Yousefi, B (2015) Is there association between ABO blood group and the risk factors of unfavorable outcomes of pregnancy? J Matern Fetal Neonatal Med 28, 578582.CrossRefGoogle ScholarPubMed
Wolpin, BM, Kraft, P & Xu, M (2010) Variant ABO blood group alleles, secretor status, and risk of pancreatic cancer: results from the pancreatic cancer cohort consortium. Cancer Epidemiol Biomarkers Prev 19, 31403149.CrossRefGoogle ScholarPubMed
Resende, SS, Milagres, VG & Chaves, DG (2017) Increased susceptibility of blood type O individuals to develop anemia in Plasmodium vivax infection. Infect Genet Evol 50, 8792.Google ScholarPubMed
Cohen, BH (1970) ABO and Rh incompatibility. I. Fetal and neonatal mortality aith ABO and Rh incompatibility. Some new interpretations. Am J Human Genet 22, 412440.Google ScholarPubMed
Morton, NE (1956) The detection and estimation of linkage between the genes for elliptocytosis and the Rh blood type. Am J Hum Genet 8, 8096.Google ScholarPubMed
Miller, EM (2014) Iron status and reproduction in USA women: National Health and Nutrition Examination Survey, 1999–2006. PLOS ONE 9, e112216.CrossRefGoogle Scholar
Goetz, LG & Valeggia, C (2017) The ecology of anemia: anemia prevalence and correlated factors in adult indigenous women in Argentina. Am J Human Biol 29, e22947.CrossRefGoogle ScholarPubMed
Pasricha, SR, Caruana, SR & Phuc, TQ (2008) Anemia, iron deficiency, meat consumption, and hookworm infection in women of reproductive age in northwest Vietnam. Am J Trop Med Hyg 78, 375381.CrossRefGoogle ScholarPubMed
Vulser, H, Wiernik, E & Hoertel, N (2016) Association between depression and anemia in otherwise healthy adults. Acta Psychiatr Scand 134, 150160.CrossRefGoogle ScholarPubMed
Perumal, V (2014) Reproductive risk factors assessment for anaemia among pregnant women in India using a multinomial logistic regression model. Trop Med Int Health 19, 841851.CrossRefGoogle ScholarPubMed
Blanco-Rojo, R, Toxqui, L & Lopez-Parra, AM (2014) Influence of diet, menstruation and genetic factors on iron status: a cross-sectional study in Spanish women of childbearing age. Int J Mol Sci 15, 40774087.CrossRefGoogle ScholarPubMed
Goon, DT, Toriola, AL & Uever, J (2010) Growth status and menarcheal age among adolescent school girls in Wannune, Benue State, Nigeria. BMC Pediatr 10, 60.CrossRefGoogle ScholarPubMed
Abioye, AI, Park, S & Ripp, K (2018) Anemia of inflammation during human pregnancy does not affect Newborn Iron Endowment. J Nutr 148, 427436.Google Scholar
Kocaoz, S, Cirpan, R & Degirmencioglu, AZ (2019) The prevalence and impacts heavy menstrual bleeding on anemia, fatigue and quality of life in women of reproductive age. Pak J Med Sci 35, 365370.CrossRefGoogle ScholarPubMed
World Health Organization (2016) Guideline: Iron supplementation in postpartum women. 2016. https://www.who.int/nutrition/publications/micronutrients/guidelines/daily_iron_supp_postpartum_women/en/ (accessed December 2020).Google Scholar
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material 1

Download Zhao et al. supplementary material(File)
File 28 KB
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material 2

Download Zhao et al. supplementary material(File)
File 95 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The prevalence and influencing factors of anaemia among pre-pregnant women in mainland China: a large population-based, cross-sectional study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The prevalence and influencing factors of anaemia among pre-pregnant women in mainland China: a large population-based, cross-sectional study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The prevalence and influencing factors of anaemia among pre-pregnant women in mainland China: a large population-based, cross-sectional study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *