Skip to main content Accessibility help
×
Home
Hostname: page-component-7bb4899584-tj5z8 Total loading time: 0.331 Render date: 2023-01-27T02:27:13.253Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Nutritional programming of large yellow croaker (Larimichthys crocea) larvae by dietary vegetable oil: effects on growth performance, lipid metabolism and antioxidant capacity

Published online by Cambridge University Press:  11 July 2022

Yongtao Liu
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China
Chuanwei Yao
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China
Kun Cui
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China
Tingting Hao
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China
Zhaoyang Yin
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China
Wenxuan Xu
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China
Wenxing Huang
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China
Kangsen Mai
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong 266003, People’s Republic of China
Qinghui Ai*
Affiliation:
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People’s Republic of China Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong 266003, People’s Republic of China
*
*Corresponding author: Email qhai@ouc.edu.cn

Abstract

The nutritional status experienced in the early development of life plays a vital role in the long-term metabolic state of the individual, which is known as nutritional programming. The present study investigated the long-term effects of vegetable oil (VO) nutritional programming during the early life of large yellow croaker. First, larvae were fed either a fish oil (FO) diet or a VO diet for 30 d. Subsequently, under the same conditions, all fish were fed a commercial diet for 90 d and thereafter challenged with an FO or VO diet for 30 d. The results showed that growth performance was significantly lower in larvae fed the VO diet than in those in fed the FO diet in the stimulus phase. Notably, VO nutritional history fish showed lower levels of liver lipids liver total triglycerides and serum nonesterified free fatty acids than the FO nutritional history fish when juveniles were challenged with the VO diet, which was consistent with the expression of lipogenesis-related genes and proteins. Moreover, the VO nutritional history fish showed lower liver damage and higher antioxidant capacity than FO nutritional history fish when challenged with the VO diet. In summary, this study showed that a short VO stimulus during the early life stage of large yellow croaker, had a long-term effect on lipid metabolism and the antioxidant system. Specifically, VO nutritional programming had a positive effect on alleviating abnormal lipid deposition on the liver, liver damage, and the reduction of hepatic antioxidant capacity caused by a VO diet.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome: FAO.Google Scholar
EUMOFA (2021) Fishmeal and Fish Oil: Production and Trade Flows in the EU. https://aquahoy.com/fishmeal-fish-oil-production-trade-flows-eu/(accessed March 2022).Google Scholar
Shi, C, Zhao, H, Zhai, X, et al. (2019) Linseed oil can decrease liver fat deposition and improve antioxidant ability of juvenile largemouth bass, Micropterus salmoides . Fish Physiol Biochem 45, 15131521.CrossRefGoogle ScholarPubMed
Torstensen, BE, Espe, M, Sanden, M, et al. (2008) Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture 285, 193200.CrossRefGoogle Scholar
Li, X, Cui, K, Fang, W, et al. (2019) High level of dietary olive oil decreased growth, increased liver lipid deposition and induced inflammation by activating the p38 MAPK and JNK pathways in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol 94, 157165.CrossRefGoogle Scholar
Xu, N, Ding, T, Liu, Y, et al. (2021) Effects of dietary tributyrin on growth performance, body composition, serum biochemical indexes and lipid metabolism-related genes expression of juvenile large yellow croaker (Larimichthys crocea) fed with high level soybean oil diets. Aquacult Nutr 27, 395406.CrossRefGoogle Scholar
Sun, S, Ye, J, Chen, J, et al. (2011) Effect of dietary fish oil replacement by rapeseed oil on the growth, fatty acid composition and serum non-specific immunity response of fingerling black carp, Mylopharyngodon piceus . Aquacult Nutr 17, 441450.CrossRefGoogle Scholar
Torstensen, B, Frøyland, L & Lie, Ø (2004) Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil–effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquacult Nutr 10, 175192.CrossRefGoogle Scholar
Li, Y, Liang, X, Zhang, Y, et al. (2016) Effects of different dietary soybean oil levels on growth, lipid deposition, tissues fatty acid composition and hepatic lipid metabolism related gene expressions in blunt snout bream (Megalobrama amblycephala) juvenile. Aquaculture 451, 1623.CrossRefGoogle Scholar
Lucas, A (1998) Programming by early nutrition: an experimental approach. J Nutr 128, 401406.CrossRefGoogle Scholar
Engrola, S, Aragão, C, Valente, LM, et al. (2018) Nutritional modulation of marine fish larvae performance. In Emerging Issues in Fish Larvae Research, pp. 209228 [Manuel Yúfera, editor]. Switzerland: Springer.CrossRefGoogle Scholar
Zambonino-Infante, JL, Panserat, S, Servili, A, et al. (2019) Nutritional programming by dietary carbohydrates in European sea bass larvae: not always what expected at juvenile stage. Aquaculture 501, 441447.CrossRefGoogle Scholar
Liu, J, Dias, K, Plagnes-Juan, E, et al. (2017) Long-term programming effect of embryonic hypoxia exposure and high-carbohydrate diet at first feeding on glucose metabolism in juvenile rainbow trout. J Exp Biol 220, 36863694.Google ScholarPubMed
George, LA, Zhang, L, Tuersunjiang, N, et al. (2012) Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am J Physiol Regul Integr Comp Physiol 302, 795804.CrossRefGoogle ScholarPubMed
Petry, CJ, Ozanne, SE & Hales, CN (2001) Programming of intermediary metabolism. Mol Cell Endocrinol 185, 8191.CrossRefGoogle ScholarPubMed
Symonds, ME, Sebert, SP, Hyatt, MA, et al. (2009) Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol 5, 604610.CrossRefGoogle ScholarPubMed
Hou, Z & Fuiman, LA (2019) Nutritional programming in fishes: insights from mammalian studies. Rev Fish Biol Fish 30, 6792.CrossRefGoogle Scholar
Clarkson, M, Migaud, H, Metochis, C, et al. (2017) Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L.). Br J Nutr 118, 1729.CrossRefGoogle Scholar
Turkmen, S, Zamorano, MJ, Fernandez-Palacios, H, et al. (2017) Parental nutritional programming and a reminder during juvenile stage affect growth, lipid metabolism and utilisation in later developmental stages of a marine teleost, the gilthead sea bream (Sparus aurata). Br J Nutr 118, 500512.CrossRefGoogle Scholar
Fang, L, Liang, X, Zhou, Y, et al. (2014) Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio . Br J Nutr 111, 808818.CrossRefGoogle ScholarPubMed
Geurden, I, Mennigen, J, Plagnes-Juan, E, et al. (2014) High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J Exp Biol 217, 33963406.CrossRefGoogle ScholarPubMed
Rocha, F, Dias, J, Engrola, S, et al. (2015) Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life. Br J Nutr 113, 403413.CrossRefGoogle ScholarPubMed
Kwasek, K, Wojno, M, Iannini, F, et al. (2020) Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio . PLOS ONE 15, e0225917.CrossRefGoogle ScholarPubMed
Perera, E & Yufera, M (2017) Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae. Fish Physiol Biochem 43, 563578.CrossRefGoogle ScholarPubMed
Lazzarotto, V, Corraze, G, Larroquet, L, et al. (2016) Does broodstock nutritional history affect the response of progeny to different first-feeding diets? A whole-body transcriptomic study of rainbow trout alevins. Br J Nutr 115, 20792092.CrossRefGoogle Scholar
Craig, PM & Moon, TW (2013) Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets. Br J Nutr 109, 402412.CrossRefGoogle Scholar
Skjaerven, KH, Jakt, LM, Dahl, JA, et al. (2016) Parental vitamin deficiency affects the embryonic gene expression of immune, lipid transport and apolipoprotein genes. Sci Rep 6, 34535.CrossRefGoogle ScholarPubMed
Skjaerven, KH, Jakt, LM, Fernandes, JMO, et al. (2018) Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring. Sci Rep 8, 3055.CrossRefGoogle ScholarPubMed
Liu, J, Plagnes-Juan, E, Geurden, I, et al. (2017) Exposure to an acute hypoxic stimulus during early life affects the expression of glucose metabolism-related genes at first-feeding in trout. Sci Rep 7, 363.CrossRefGoogle Scholar
Luo, J, Li, Y, Jin, M, et al. (2020) Effects of dietary exogenous xylanase supplementation on growth performance, intestinal health, and carbohydrate metabolism of juvenile large yellow croaker, Larimichthys crocea . Fish Physiol Biochem 46, 10931110.CrossRefGoogle ScholarPubMed
CFSY (2021) China Fishery Statistical Yearbook. Beijing: China Agriculture Press.Google Scholar
Wang, X, Li, Y, Hou, C, et al. (2012) Influence of different dietary lipid sources on the growth, tissue fatty acid composition, histological changes and peroxisome proliferator-activated receptor γ gene expression in large yellow croaker (Pseudosciaena crocea R.). Aquacult Res 43, 281291.CrossRefGoogle Scholar
Li, X, Ji, R, Cui, K, et al. (2019) High percentage of dietary palm oil suppressed growth and antioxidant capacity and induced the inflammation by activation of TLR-NF-κB signaling pathway in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol 87, 600608.CrossRefGoogle Scholar
AOAC (1995) Official Methods of Analysis, 16th ed. Arlington, VA: Association of Official Analytical Chemists.Google Scholar
Zuo, R, Ai, Q, Mai, K, et al. (2013) Effects of conjugated linoleic acid on growth, non-specific immunity, antioxidant capacity, lipid deposition and related gene expression in juvenile large yellow croaker (Larmichthys crocea) fed soyabean oil-based diets. Br J Nutr 110, 12201232.CrossRefGoogle ScholarPubMed
Geurden, I, Borchert, P, Balasubramanian, MN, et al. (2013) The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS ONE 8, E83162.CrossRefGoogle ScholarPubMed
Mai, K, Yu, H, Ma, H, et al. (2005) A histological study on the development of the digestive system of Pseudosciaena crocea larvae and juveniles. J Fish Biol 67, 10941106.CrossRefGoogle Scholar
Vagner, M, Zambonino Infante, JL, Robin, JH, et al. (2007) Is it possible to influence European sea bass (Dicentrarchus labrax) juvenile metabolism by a nutritional conditioning during larval stage? Aquaculture 267, 165174.CrossRefGoogle Scholar
Rocha, F, Dias, J, Geurden, I, et al. (2016) Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: an in vivo approach using (14)C-starch. Comp Biochem Physiol A Mol Integr Physiol 201, 189199.CrossRefGoogle Scholar
Turkmen, S, Castro, PL, Caballero, MJ, et al. (2017) Nutritional stimuli of gilthead seabream (Sparus aurata) larvae by dietary fatty acids: effects on larval performance, gene expression and neurogenesis. Aquacult Res 48, 202213.CrossRefGoogle Scholar
Fournier, V, Huelvan, C & Desbruyeres, E (2004) Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psetta maxima). Aquaculture 236, 451465.CrossRefGoogle Scholar
Ali, M, Nicieza, A & Wootton, RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fisheries 4, 147190.CrossRefGoogle Scholar
Kemski, M, Wick, M & Dabrowski, K (2018) Nutritional programming effects on growth and reproduction of broodstock and embryonic development of progeny in yellow perch (Perca flavescens) fed soybean meal-based diets. Aquaculture 497, 452461.CrossRefGoogle Scholar
Balasubramanian, MN, Panserat, S, Dupont-Nivet, M, et al. (2016) Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 17, 449.CrossRefGoogle ScholarPubMed
Candler, T, Kühnen, P, Prentice, AM, et al. (2019) Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 54, 100773.CrossRefGoogle ScholarPubMed
Zhu, Q, Wang, J, He, S, et al. (2020) Early leucine programming on protein utilization and mTOR signaling by DNA methylation in zebrafish (Danio rerio). Nutr Metab 17, 67.CrossRefGoogle Scholar
Xu, H, Turchini, GM, Francis, DS, et al. (2020) Are fish what they eat? A fatty acid’s perspective. Prog Lipid Res 80, 101064.CrossRefGoogle ScholarPubMed
Vagner, M, Robin, JH, Infante, JLZ, et al. (2007) Combined effects of dietary HUFA level and temperature on sea bass (Dicentrarchus labrax) larvae development. Aquaculture 266, 179190.CrossRefGoogle Scholar
Xu, H, Dong, X, Ai, Q, et al. (2014) Regulation of tissue LC-PUFA contents, Δ6 fatty acyl desaturase (FADS2) gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese seabass (Lateolabrax japonicus). PLoS ONE 9, E87726.CrossRefGoogle Scholar
Piedecausa, MA, Mazon, MJ, Garcia, BG, et al. (2007) Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture 263, 211219.CrossRefGoogle Scholar
Fountoulaki, E, Vasilaki, A, Hurtado, R, et al. (2009) Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture 289, 317326.CrossRefGoogle Scholar
Cai, DM, Wang, JJ, Jia, YM, et al. (2016) Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms. Biochim Biophys Acta 1861, 4150.CrossRefGoogle ScholarPubMed
Heng, J, Tian, M, Zhang, W, et al. (2019) Maternal heat stress regulates the early fat deposition partly through modification of m(6)A RNA methylation in neonatal piglets. Cell Stress Chaperones 24, 635645.CrossRefGoogle ScholarPubMed
Tan, P, Dong, X, Xu, H, et al. (2017) Dietary vegetable oil suppressed non-specific immunity and liver antioxidant capacity but induced inflammatory response in Japanese sea bass (Lateolabrax japonicus). Fish Shellfish Immunol 63, 139146.CrossRefGoogle Scholar
Ji, R, Xiang, X, Li, X et al. (2020) Effects of dietary curcumin on growth, antioxidant capacity, fatty acid composition and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet. Br J Nutr 126, 345354.CrossRefGoogle ScholarPubMed
Hyder, MA, Hasan, M & Mohieldein, AH (2013) Comparative levels of ALT, AST, ALP and GGT in liver associated diseases. Eur J Exp Biol 3, 280284.Google Scholar
Podaza, EA, Echarte, SM & Chisari, AN (2015) A low maternal protein diet during pregnancy and lactation induce liver offspring damage, in the rat. Ann Nutr Disord Ther 2, 1020.Google Scholar
Bruce, KD, Cagampang, FR, Argenton, M, et al. (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50, 17961808.CrossRefGoogle ScholarPubMed
Lesser, MP (2011) Oxidative Stress in Tropical Marine Ecosystems. Chichester: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Del Rio, D, Stewart, AJ & Pellegrini, N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15, 316328.CrossRefGoogle ScholarPubMed
Resende, AC, Emiliano, AF, Cordeiro, VS, et al. (2013) Grape skin extract protects against programmed changes in the adult rat offspring caused by maternal high-fat diet during lactation. J Nutr Biochem 24, 21192126.CrossRefGoogle ScholarPubMed
Vanhees, K, van Schooten, FJ, van Doorn-Khosrovani, SBV, et al. (2013) Intrauterine exposure to flavonoids modifies antioxidant status at adulthood and decreases oxidative stress-induced DNA damage. Free Radic Biol Med 57, 154161.CrossRefGoogle ScholarPubMed
Barden, AE, Mori, TA, Dunstan, JA, et al. (2004) Fish oil supplementation in pregnancy lowers F 2-isoprostanes in neonates at high risk of atopy. Free Radic Res 38, 233239.CrossRefGoogle Scholar
Wischhusen, P, Larroquet, L, Durand, T, et al. (2020) Oxidative stress and antioxidant response in rainbow trout fry exposed to acute hypoxia is affected by selenium nutrition of parents and during first exogenous feeding. Free Radic Biol Med 155, 99113.CrossRefGoogle ScholarPubMed
Luo, L, Wei, HC, Ai, LC, et al. (2019) Effects of early long-chain n-3HUFA programming on growth, antioxidant response and lipid metabolism of Siberian sturgeon (Acipenser baerii Brandt). Aquaculture 509, 96103.CrossRefGoogle Scholar
Vanhees, K, Vonhogen, IG, van Schooten, FJ, et al. (2014) You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring. Cell Mol Life Sci 71, 271285.CrossRefGoogle ScholarPubMed
Thompson, LP & Al-Hasan, Y (2012) Impact of oxidative stress in fetal programming. J Pregnancy 2012, 582748.CrossRefGoogle ScholarPubMed
Milagro, FI, Mansego, ML, De Miguel, C, et al. (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34, 782812.CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Tables S1-S2

Download Liu et al. supplementary material(File)
File 24 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nutritional programming of large yellow croaker (Larimichthys crocea) larvae by dietary vegetable oil: effects on growth performance, lipid metabolism and antioxidant capacity
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Nutritional programming of large yellow croaker (Larimichthys crocea) larvae by dietary vegetable oil: effects on growth performance, lipid metabolism and antioxidant capacity
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Nutritional programming of large yellow croaker (Larimichthys crocea) larvae by dietary vegetable oil: effects on growth performance, lipid metabolism and antioxidant capacity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *