Hostname: page-component-758b78586c-t6f8b Total loading time: 0 Render date: 2023-11-28T16:46:49.002Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Multigenomic modifications in human circulating immune cells in response to consumption of polyphenol-rich extract of yerba mate (Ilex paraguariensis A. St.-Hil.) are suggestive of cardiometabolic protective effects

Published online by Cambridge University Press:  04 April 2022

Tatjana Ruskovska
Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
Christine Morand
Human Nutrition Unit, Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
Carla Indianara Bonetti
Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, Toledo, PR, Brazil
Karimi Sater Gebara
Grande Dourados University Center, UNIGRAN, R. Balbina de Matos, Dourados, MS, Brazil
Euclides Lara Cardozo Junior
Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, Toledo, PR, Brazil
Dragan Milenkovic*
Human Nutrition Unit, Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France Department of Nutrition, University of California Davis, Davis, CA, USA
*Corresponding author: Dr D. Milenkovic, email


Mate is a traditional drink obtained from the leaves of yerba mate and rich in a diversity of plant bioactive compounds including polyphenols, particularly chlorogenic acids. Studies, even though limited, suggest that consumption of mate is associated with health effects, including prevention of cardiometabolic disorders. Molecular mechanisms underlying the potential health properties are still largely unknown, especially in humans. The aim of this study was to investigate nutrigenomic effects of mate consumption and identify regulatory networks potentially mediating cardiometabolic health benefits. Healthy middle-aged men at risk for CVD consumed a standardised mate extract or placebo for 4 weeks. Global gene expression, including protein coding and non-coding RNA profiles, was determined using microarrays. Biological function analyses were performed using integrated bioinformatic tools. Comparison of global gene expression profiles showed significant change following mate consumption with 2635 significantly differentially expressed genes, among which six are miRNA and 244 are lncRNA. Functional analyses showed that these genes are involved in regulation of cell interactions and motility, inflammation or cell signalling. Transcription factors, such as MEF2A, MYB or HNF1A, could have their activity modulated by mate consumption either by direct interaction with polyphenol metabolites or by interactions of metabolites with cell signalling proteins, like p38 or ERK1/2, that could modulate transcription factor activity and regulate expression of genes observed. Correlation analysis suggests that expression profile is inversely associated with gene expression profiles of patients with cardiometabolic disorders. Therefore, mate consumption may exert cardiometabolic protective effects by modulating gene expression towards a protective profile.

Research Article
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Cardozo Junior, EL & Morand, C (2016) Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health – a review. J Funct Foods 21, 440454.CrossRefGoogle Scholar
Borré, GL, Kaiser, S, Pavei, C, et al. (2010) Comparison of methylxanthine, phenolics and saponin contents in leaves, branches and unripe fruits from Ilex Paraguariensis A. St.-Hil (MATE). J Liq Chromatogr Relat Technol 33, 362374.CrossRefGoogle Scholar
Bravo, L, Goya, L & Lecumberri, E (2007) LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res Int 40, 393405.CrossRefGoogle Scholar
Gebara, KS, Gasparotto-Junior, A, Santiago, PG, et al. (2017) Daily intake of chlorogenic acids from consumption of maté (Ilex paraguariensis A.St.-Hil.) traditional beverages. J Agric Food Chem 65, 1009310100.CrossRefGoogle Scholar
Gebara, KS, Gasparotto Junior, A, Palozi, RAC, et al. (2020) A randomized crossover intervention study on the effect a standardized maté extract (Ilex paraguariensis A. St.-Hil.) in men predisposed to cardiovascular risk. Nutrients 13, 14.CrossRefGoogle ScholarPubMed
Gómez-Juaristi, M, Martínez-López, S, Sarria, B, et al. (2018) Absorption and metabolism of yerba mate phenolic compounds in humans. Food Chem 240, 10281038.CrossRefGoogle ScholarPubMed
Gan, RY, Zhang, D, Wang, M, et al. (2018) Health benefits of bioactive compounds from the genus ilex, a source of traditional caffeinated beverages. Nutrients 10, 1682.CrossRefGoogle ScholarPubMed
Pimentel, GD, Lira, FS, Rosa, JC, et al. (2013) Yerba mate extract (Ilex paraguariensis) attenuates both central and peripheral inflammatory effects of diet-induced obesity in rats. J Nutr Biochem 24, 809818.CrossRefGoogle ScholarPubMed
Bravo, L, Mateos, R, Sarriá, B, et al. (2014) Hypocholesterolaemic and antioxidant effects of yerba mate (Ilex paraguariensis) in high-cholesterol fed rats. Fitoterapia 92, 219229.CrossRefGoogle ScholarPubMed
Balzan, S, Hernandes, A, Reichert, CL, et al. (2013) Lipid-lowering effects of standardized extracts of Ilex paraguariensis in high-fat-diet rats. Fitoterapia 86, 115122.CrossRefGoogle ScholarPubMed
Hussein, GM, Matsuda, H, Nakamura, S, et al. (2011) Protective and ameliorative effects of maté (Ilex paraguariensis) on metabolic syndrome in TSOD mice. Phytomedicine 19, 8897.CrossRefGoogle ScholarPubMed
Gao, H, Liu, Z, Qu, X, et al. (2013) Effects of yerba mate tea (Ilex paraguariensis) on vascular endothelial function and liver lipoprotein receptor gene expression in hyperlipidemic rats. Fitoterapia 84, 264272.CrossRefGoogle ScholarPubMed
Yu, S, Yue, S, Liu, Z, et al. (2015) Yerba mate (Ilex paraguariensis) improves microcirculation of volunteers with high blood viscosity: a randomized, double-blind, placebo-controlled trial. Exp Gerontol 62, 1422.CrossRefGoogle ScholarPubMed
Kim, SY, Oh, MR, Kim, MG, et al. (2015) Anti-obesity effects of yerba mate (Ilex Paraguariensis): a randomized, double-blind, placebo-controlled clinical trial. BMC Complement Altern Med 15, 338.CrossRefGoogle ScholarPubMed
Balsan, G, Pellanda, LC, Sausen, G, et al. (2019) Effect of yerba mate and green tea on paraoxonase and leptin levels in patients affected by overweight or obesity and dyslipidemia: a randomized clinical trial. Nutr J 18, 5.CrossRefGoogle ScholarPubMed
de Meneses Fujii, TM, Jacob, PS, Yamada, M, et al. (2014) Yerba mate (Ilex paraguariensis) modulates NF-κB pathway and AKT expression in the liver of rats fed on a high-fat diet. Int J Food Sci Nutr 65, 967976.CrossRefGoogle ScholarPubMed
Arçari, DP, Santos, JC, Gambero, A, et al. (2013) Modulatory effects of yerba maté (Ilex paraguariensis) on the PI3K-AKT signaling pathway. Mol Nutr Food Res 57, 18821885.CrossRefGoogle ScholarPubMed
Gao, H, Long, Y, Jiang, X, et al. (2013) Beneficial effects of yerba mate tea (Ilex paraguariensis) on hyperlipidemia in high-fat-fed hamsters. Exp Gerontol 48, 572578.CrossRefGoogle ScholarPubMed
Pang, J, Choi, Y & Park, T (2008) Ilex paraguariensis extract ameliorates obesity induced by high-fat diet: potential role of AMPK in the visceral adipose tissue. Arch Biochem Biophys 476, 178185.CrossRefGoogle ScholarPubMed
Choi, MS, Park, HJ, Kim, SR, et al. (2017) Long-term dietary supplementation with yerba mate ameliorates diet-induced obesity and metabolic disorders in mice by regulating energy expenditure and lipid metabolism. J Med Food 20, 11681175.CrossRefGoogle ScholarPubMed
Arçari, DP, Bartchewsky, W, dos Santos, TW, et al. (2009) Antiobesity effects of yerba maté extract (Ilex paraguariensis) in high-fat diet-induced obese mice. Obesity 17, 21272133.CrossRefGoogle ScholarPubMed
Heck, CI & de Mejia, EG (2007) Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72, R138R151.CrossRefGoogle ScholarPubMed
Ruskovska, T, Massaro, M, Carluccio, MA, et al. (2020) Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 11, 50405064.CrossRefGoogle ScholarPubMed
Monfoulet, LE, Ruskovska, T, Ajdžanović, V, et al. (2021) Molecular determinants of the cardiometabolic improvements of dietary flavanols identified by an integrative analysis of nutrigenomic data from a systematic review of animal studies. Mol Nutr Food Res 65, e2100227.CrossRefGoogle ScholarPubMed
Ruskovska, T, Budić-Leto, I, Corral-Jara, KF, et al. (2021) Systematic bioinformatic analyses of nutrigenomic modifications by polyphenols associated with cardiometabolic health in humans-evidence from targeted nutrigenomic studies. Nutrients 13, 2326.CrossRefGoogle ScholarPubMed
Jiang, Y, Sun-Waterhouse, D, Chen, Y, et al. (2021) Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: are long non-coding RNAs rising stars? Crit Rev Food Sci Nutr, 119.Google ScholarPubMed
Lipsy, RJ (2003) The national cholesterol education program adult treatment panel III guidelines. J Manag Care Pharm 9, 25.Google ScholarPubMed
Sociedade Brasileira de Hipertensão, Sociedade Brasileira de Cardiologia, Sociedade Brasileira de Nefrologia, et al. (2005) I Brazilian guidelines on diagnosis and treatment of metabolic syndrome. Arq Bras Cardiol 84, Suppl. 1, 128.Google Scholar
Milenkovic, D, Vanden Berghe, W, Boby, C, et al. (2014) Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLOS ONE 9, e95527.CrossRefGoogle ScholarPubMed
Milenkovic, D, Deval, C, Dubray, C, et al. (2011) Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers: a randomized controlled cross-over study. PLOS ONE 6, e26669.CrossRefGoogle ScholarPubMed
Dessau, RB & Pipper, CB (2008) “R”–project for statistical computing. Ugeskr Laeger 170, 328330.Google ScholarPubMed
Xia, J & Wishart, DS (2011) Metabolomic data processing, analysis, and interpretation using metaboanalyst. Curr Protoc Bioinformatics.CrossRefGoogle ScholarPubMed
Metsalu, T & Vilo, J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43, W566W570.CrossRefGoogle ScholarPubMed
Ge, SX, Jung, D & Yao, R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 26282629.CrossRefGoogle ScholarPubMed
Gerstner, N, Kehl, T, Lenhof, K, et al. (2020) GeneTrail 3: advanced high-throughput enrichment analysis. Nucleic Acids Res 48, W515W520.CrossRefGoogle ScholarPubMed
Zhou, G & Xia, J (2019) Using omicsnet for network integration and 3D visualization. Curr Protoc Bioinformatics 65, e69.CrossRefGoogle Scholar
Zhou, G & Xia, J (2018) OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res 46, W514W522.CrossRefGoogle ScholarPubMed
Chen, EY, Tan, CM, Kou, Y, et al. (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128.CrossRefGoogle ScholarPubMed
Kuleshov, MV, Jones, MR, Rouillard, AD, et al. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90W97.CrossRefGoogle ScholarPubMed
Grosdidier, A, Zoete, V & Michielin, O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39, W270W277.CrossRefGoogle ScholarPubMed
The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49, D480D489.CrossRefGoogle Scholar
Kim, S, Chen, J, Cheng, T, et al. (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49, D1388D1395.CrossRefGoogle ScholarPubMed
Licursi, V, Conte, F, Fiscon, G, et al. (2019) MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics 20, 545.CrossRefGoogle ScholarPubMed
Fukunaga, T, Iwakiri, J, Ono, Y, et al. (2019) LncRRIsearch: a web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet 10, 462.CrossRefGoogle ScholarPubMed
Shannon, P, Markiel, A, Ozier, O, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 24982504.CrossRefGoogle ScholarPubMed
Heberle, H, Meirelles, GV, da Silva, FR, et al. (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, 169.CrossRefGoogle ScholarPubMed
Kanehisa, M & Goto, S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 2730.CrossRefGoogle ScholarPubMed
Davis, AP, Grondin, CJ, Johnson, RJ, et al. (2021) Comparative toxicogenomics database (CTD): update 2021. Nucleic Acids Res 49, D1138D1143.CrossRefGoogle ScholarPubMed
Afman, L, Milenkovic, D & Roche, HM (2014) Nutritional aspects of metabolic inflammation in relation to health–insights from transcriptomic biomarkers in PBMC of fatty acids and polyphenols. Mol Nutr Food Res 58, 17081720.CrossRefGoogle ScholarPubMed
Conde, WL & Monteiro, CA (2014) Nutrition transition and double burden of undernutrition and excess of weight in Brazil. Am J Clin Nutr 100, 1617s1622s.CrossRefGoogle ScholarPubMed
Schmidt, MI, Duncan, BB, Azevedo e Silva, G, et al. (2011) Chronic non-communicable diseases in Brazil: burden and current challenges. Lancet 377, 19491961.CrossRefGoogle ScholarPubMed
Picon, RV, Fuchs, FD, Moreira, LB, et al. (2012) Trends in prevalence of hypertension in Brazil: a systematic review with meta-analysis. PLOS ONE 7, E48255.CrossRefGoogle Scholar
Gibney, ER, Milenkovic, D, Combet, E, et al. (2019) Factors influencing the cardiometabolic response to (poly)phenols and phytosterols: a review of the COST action POSITIVe activities. Eur J Nutr 58, 3747.CrossRefGoogle ScholarPubMed
Milenkovic, D, Morand, C, Cassidy, A, et al. (2017) Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bioactive compounds and the determinants involved. Adv Nutr 8, 558570.CrossRefGoogle ScholarPubMed
Barnung, RB, Nøst, TH, Ulven, SM, et al. (2018) Coffee consumption and whole-blood gene expression in the Norwegian women and cancer post-genome cohort. Nutrients 10, 1047.CrossRefGoogle Scholar
Takahashi, S, Saito, K, Jia, H, et al. (2014) An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption. PLOS ONE 9, e91134.CrossRefGoogle ScholarPubMed
Huang, X, Liu, G, Guo, J, et al. (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14, 14831496.CrossRefGoogle ScholarPubMed
Diamanti-Kandarakis, E & Dunaif, A (2012) Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33, 9811030.CrossRefGoogle ScholarPubMed
Ravnskjaer, K, Madiraju, A & Montminy, M (2016) Role of the cAMP pathway in glucose and lipid metabolism. Handb Exp Pharmacol 233, 2949.CrossRefGoogle ScholarPubMed
Delaunay, M, Osman, H, Kaiser, S, et al. (2019) The role of cyclic AMP signaling in cardiac fibrosis. Cells 9, 69.CrossRefGoogle ScholarPubMed
Lorenowicz, MJ, Fernandez-Borja, M & Hordijk, PL (2007) cAMP signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 27, 10141022.CrossRefGoogle ScholarPubMed
Martínez-López, S, Sarriá, B, Mateos, R, et al. (2019) Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur J Nutr 58, 865878.CrossRefGoogle Scholar
Roshan, H, Nikpayam, O, Sedaghat, M, et al. (2018) Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br J Nutr 119, 250258.CrossRefGoogle ScholarPubMed
Bumrungpert, A, Lilitchan, S, Tuntipopipat, S, et al. (2018) Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 10, 713.CrossRefGoogle ScholarPubMed
Martini, D, Chiavaroli, L, González-Sarrías, A, et al. (2019) Impact of foods and dietary supplements containing hydroxycinnamic acids on cardiometabolic biomarkers: a systematic review to explore inter-individual variability. Nutrients 11, 1805.CrossRefGoogle ScholarPubMed
Yin, Y, Qi, F, Song, Z, et al. (2014) Ferulic acid combined with astragaloside IV protects against vascular endothelial dysfunction in diabetic rats. Biosci Trends 8, 217226.CrossRefGoogle ScholarPubMed
Yeh, CT, Ching, LC & Yen, GC (2009) Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. J Nutr Biochem 20, 163171.CrossRefGoogle ScholarPubMed
Silambarasan, T, Manivannan, J, Krishna Priya, M, et al. (2014) Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLOS ONE 9, e115682.CrossRefGoogle ScholarPubMed
Luo, M, Chen, PP, Yang, L, et al. (2019) Sodium ferulate inhibits myocardial hypertrophy induced by abdominal coarctation in rats: involvement of cardiac PKC and MAPK signaling pathways. Biomed Pharmacother 112, 108735.CrossRefGoogle ScholarPubMed
Ho, L, Varghese, M, Wang, J, et al. (2012) Dietary supplementation with decaffeinated green coffee improves diet-induced insulin resistance and brain energy metabolism in mice. Nutr Neurosci 15, 3745.CrossRefGoogle ScholarPubMed
Libby, P (2002) Inflammation in atherosclerosis. Nature 420, 868874.CrossRefGoogle ScholarPubMed
Chen, J & Chung, DW (2018) Inflammation, von Willebrand factor, and ADAMTS13. Blood 132, 141147.CrossRefGoogle ScholarPubMed
Shim, CY, Liu, YN, Atkinson, T, et al. (2015) Molecular imaging of platelet-endothelial interactions and endothelial von Willebrand factor in early and mid-stage atherosclerosis. Circ Cardiovasc Imag 8, e002765.CrossRefGoogle ScholarPubMed
Jang, MK, Kim, JY, Jeoung, NH, et al. (2004) Oxidized low-density lipoproteins may induce expression of monocyte chemotactic protein-3 in atherosclerotic plaques. Biochem Biophys Res Commun 323, 898905.CrossRefGoogle ScholarPubMed
Maddaluno, M, Di Lauro, M, Di Pascale, A, et al. (2011) Monocyte chemotactic protein-3 induces human coronary smooth muscle cell proliferation. Atherosclerosis 217, 113119.CrossRefGoogle ScholarPubMed
Tsuhako, R, Yoshida, H, Sugita, C, et al. (2020) Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice. J Nat Med 74, 229237.CrossRefGoogle ScholarPubMed
Kiechl, S, Wittmann, J, Giaccari, A, et al. (2013) Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med 19, 358363.CrossRefGoogle ScholarPubMed
Wu, M, Rementer, C & Giachelli, CM (2013) Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int 93, 365373.CrossRefGoogle ScholarPubMed
Hörber, S, Lehmann, R, Fritsche, L, et al. (2021) Lifestyle intervention improves prothrombotic coagulation profile in individuals at high risk for type 2 diabetes. J Clin Endocrinol Metab 106, e3198e3207.CrossRefGoogle ScholarPubMed
Morris, BJ, Willcox, DC, Donlon, TA, et al. (2015) FOXO3: a major gene for human longevity–a mini-review. Gerontology 61, 515525.CrossRefGoogle Scholar
Sanese, P, Forte, G, Disciglio, V, et al. (2019) FOXO3 on the road to longevity: lessons from SNPs and chromatin hubs. Comput Struct Biotechnol J 17, 737745.CrossRefGoogle ScholarPubMed
Bao, JM, Song, XL, Hong, YQ, et al. (2014) Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis. Asian J Androl 16, 446452.Google ScholarPubMed
Jimenez, L, Silva, A, Calissi, G, et al. (2021) Screening health-promoting compounds for their capacity to induce the activity of FOXO3. J Gerontol A Biol Sci Med Sci, glab265.Google Scholar
Hartwig, J, Loebel, M, Steiner, S, et al. (2021) Metformin attenuates ROS via FOXO3 activation in immune cells. Front Immunol 12, 581799.CrossRefGoogle ScholarPubMed
Zingg, JM, Hasan, ST, Cowan, D, et al. (2012) Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages. J Cell Biochem 113, 833840.CrossRefGoogle ScholarPubMed
Pon, JR & Marra, MA (2016) MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget 7, 22972312.CrossRefGoogle ScholarPubMed
Li, C, Sun, XN, Chen, BY, et al. (2019) Nuclear receptor corepressor 1 represses cardiac hypertrophy. EMBO Mol Med 11, e9127.CrossRefGoogle ScholarPubMed
Takeda, M, Yamamoto, K, Takemura, Y, et al. (2013) Loss of ACE2 exaggerates high-calorie diet-induced insulin resistance by reduction of GLUT4 in mice. Diabetes 62, 223233.CrossRefGoogle ScholarPubMed
Lu, YW, Martino, N, Gerlach, BD, et al. (2021) MEF2 (myocyte enhancer factor 2) is essential for endothelial homeostasis and the atheroprotective gene expression program. Arterioscler Thromb Vasc Biol 41, 11051123.CrossRefGoogle ScholarPubMed
Chen, X, Guo, Y, Jia, G, et al. (2019) Ferulic acid regulates muscle fiber type formation through the Sirt1/AMPK signaling pathway. Food Funct 10, 259265.CrossRefGoogle ScholarPubMed
Shikatani, EA, Besla, R, Ensan, S, et al. (2019) c-Myb exacerbates atherosclerosis through regulation of protective IgM-producing antibody-secreting cells. Cell Rep 27, 2304.e62312.e6.CrossRefGoogle ScholarPubMed
Reiner, AP, Barber, MJ, Guan, Y, et al. (2008) Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 α are associated with C-reactive protein. Am J Hum Genet 82, 11931201.CrossRefGoogle ScholarPubMed
Hsu, LA, Ko, YL, Teng, MS, et al. (2011) Effect of obesity on the association between common variations in the HNF1A gene region and C-reactive protein level in Taiwanese. Clin Chim Acta 412, 725729.CrossRefGoogle ScholarPubMed
Hong, EP, Kim, DH, Suh, JG, et al. (2014) Genetic risk assessment for cardiovascular disease with seven genes associated with plasma C-reactive protein concentrations in Asian populations. Hypertens Res 37, 692698.CrossRefGoogle ScholarPubMed
Zia, A, Imran, M & Rashid, S (2020) In silico exploration of conformational dynamics and novel inhibitors for targeting MEF2-associated transcriptional activity. J Chem Inf Model 60, 18921909.Google ScholarPubMed
Huang, YM (2021) Multiscale computational study of ligand binding pathways: case of p38 MAP kinase and its inhibitors. Biophys J 120, 38813892.Google ScholarPubMed
Saliminejad, K, Khorram Khorshid, HR, Soleymani Fard, S, et al. (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234, 54515465.CrossRefGoogle ScholarPubMed
Włodarski, A, Strycharz, J, Wróblewski, A, et al. (2020) The role of microRNAs in metabolic syndrome-related oxidative stress. Int J Mol Sci 21, 6902.CrossRefGoogle ScholarPubMed
Milenkovic, D, Berghe, WV, Morand, C, et al. (2018) A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep 8, 15487.CrossRefGoogle ScholarPubMed
Krga, I, Tamaian, R, Mercier, S, et al. (2018) Anthocyanins and their gut metabolites attenuate monocyte adhesion and transendothelial migration through nutrigenomic mechanisms regulating endothelial cell permeability. Free Radic Biol Med 124, 364379.CrossRefGoogle ScholarPubMed
Milenkovic, D, Deval, C, Gouranton, E, et al. (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLOS ONE 7, e29837.CrossRefGoogle ScholarPubMed
Rodriguez-Mateos, A, Istas, G, Boschek, L, et al. (2019) Circulating anthocyanin metabolites mediate vascular benefits of blueberries: insights from randomized controlled trials, metabolomics, and nutrigenomics. J Gerontol A Biol Sci Med Sci 74, 967976.CrossRefGoogle ScholarPubMed
Mens, MMJ, Maas, SCE, Klap, J, et al. (2020) Multi-omics analysis reveals micrornas associated with cardiometabolic traits. Front Genet 11, 110.CrossRefGoogle ScholarPubMed
Hromadnikova, I, Kotlabova, K, Dvorakova, L, et al. (2020) Diabetes mellitus and cardiovascular risk assessment in mothers with a history of gestational diabetes mellitus based on postpartal expression profile of micrornas associated with diabetes mellitus and cardiovascular and cerebrovascular diseases. Int J Mol Sci 21, 2437.CrossRefGoogle ScholarPubMed
Li, C, Zhang, Z, Xu, Q, et al. (2020) Comprehensive analyses of miRNA-mRNA network and potential drugs in idiopathic pulmonary arterial hypertension. Biomed Res Int 2020, 5156304.Google ScholarPubMed
Meng, X, Yin, J, Yu, X, et al. (2020) MicroRNA-205-5p promotes unstable atherosclerotic plaque formation in vivo . Cardiovasc Drugs Ther 34, 2539.CrossRefGoogle ScholarPubMed
Natsume, Y, Oaku, K, Takahashi, K, et al. (2018) Combined analysis of human and experimental murine samples identified novel circulating microRNAs as biomarkers for atrial fibrillation. Circ J 82, 965973.CrossRefGoogle ScholarPubMed
Kaneto, CM, Nascimento, JS, Moreira, MCR, et al. (2017) MicroRNA profiling identifies miR-7–5p and miR-26b-5p as differentially expressed in hypertensive patients with left ventricular hypertrophy. Braz J Med Biol Res 50, e6211.CrossRefGoogle ScholarPubMed
Barber, JL, Zellars, KN, Barringhaus, KG, et al. (2019) The effects of regular exercise on circulating cardiovascular-related MicroRNAs. Sci Rep 9, 7527.CrossRefGoogle ScholarPubMed
Ma, L, Bajic, VB & Zhang, Z (2013) On the classification of long non-coding RNAs. RNA Biol 10, 925933.CrossRefGoogle ScholarPubMed
Quinn, JJ & Chang, HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17, 4762.CrossRefGoogle ScholarPubMed
Dykes, IM & Emanueli, C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 15, 177186.CrossRefGoogle ScholarPubMed
Wijesinghe, SN, Nicholson, T, Tsintzas, K, et al. (2021) Involvements of long noncoding RNAs in obesity-associated inflammatory diseases. Obes Rev 22, e13156.CrossRefGoogle ScholarPubMed
Uchida, S & Dimmeler, S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116, 737750.CrossRefGoogle ScholarPubMed
Nuthikattu, S, Milenkovic, D, Norman, JE, et al. (2021) Inhibition of soluble epoxide hydrolase is protective against the multiomic effects of a high glycemic diet on brain microvascular inflammation and cognitive dysfunction. Nutrients 13, 3913.CrossRefGoogle ScholarPubMed
Nuthikattu, S, Milenkovic, D, Rutledge, JC, et al. (2020) Lipotoxic injury differentially regulates brain microvascular gene expression in male mice. Nutrients 12, 1771.CrossRefGoogle ScholarPubMed
Nuthikattu, S, Milenkovic, D, Rutledge, J, et al. (2019) The western diet regulates hippocampal microvascular gene expression: an integrated genomic analyses in female mice. Sci Rep 9, 19058.CrossRefGoogle ScholarPubMed
Xu, B, Fang, Z, He, S, et al. (2018) ANRIL polymorphism rs4977574 is associated with increased risk of coronary artery disease in Asian populations: a meta-analysis of 12,005 subjects. Medicine 97, e12641.CrossRefGoogle ScholarPubMed
Cheng, J, Cai, MY, Chen, YN, et al. (2017) Variants in ANRIL gene correlated with its expression contribute to myocardial infarction risk. Oncotarget 8, 1260712619.CrossRefGoogle ScholarPubMed
Fasolo, F, Di Gregoli, K, Maegdefessel, L, et al. (2019) Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res 115, 17321756.CrossRefGoogle ScholarPubMed
Wang, F, Su, X, Liu, C, et al. (2017) Prognostic value of plasma long noncoding RNA ANRIL for in-stent restenosis. Med Sci Monit 23, 47334739.CrossRefGoogle ScholarPubMed
Sathishkumar, C, Prabu, P, Mohan, V, et al. (2018) Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum Genomics 12, 41.CrossRefGoogle ScholarPubMed
Zhu, X, Liu, Y, Yu, J, et al. (2019) LncRNA HOXA-AS2 represses endothelium inflammation by regulating the activity of NF-κB signaling. Atherosclerosis 281, 3846.CrossRefGoogle ScholarPubMed
Neumann, P, Jaé, N, Knau, A, et al. (2018) The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun 9, 237.CrossRefGoogle ScholarPubMed
Milenkovic, D, Rodriguez-Mateos, A, Lucosz, M, et al. (2022) Flavanol consumption in healthy men preserves integrity of immunological-endothelial barrier cell functions: nutri(epi)genomic analysis. Mol Nutr Food Res, e2100991.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ruskovska et al. supplementary material

Figures S1-S3

Download Ruskovska et al. supplementary material(File)
File 1 MB