Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-w6vhv Total loading time: 0.589 Render date: 2022-11-28T12:43:32.386Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Low selenium intake is associated with postpartum weight retention in Chinese women and impaired physical development of their offspring

Published online by Cambridge University Press:  11 January 2021

Feng Han
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
Yiqun Liu
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
Xuehong Pang
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
Qin Wang*
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
Liping Liu
Affiliation:
Beijing Center for Diseases Prevention and Control, Beijing100013, People’s Republic of China
Yingjuan Chai
Affiliation:
Maternal and Child Care Hospital of Xicheng District, Beijing100054, People’s Republic of China
Jie Zhang
Affiliation:
Center for Disease Control and Prevention of Enshi Autonomous Prefecture, Enshi445000, Hubei Province, People’s Republic of China
Shijin Wang
Affiliation:
Center for Disease Control and Prevention of Yi Autonomous Prefecture of Liangshan, Liangshan615000, Sichuan Province, People’s Republic of China
Jiaxi Lu
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
Licui Sun
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
Shuo Zhan
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
Zhenwu Huang*
Affiliation:
The Key Laboratory of Micronutrients Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing100050, People’s Republic of China
*
*Corresponding authors: Qin Wang, email wangqin@ninh.chinacdc.cn; Zhenwu Huang, email huangzw@ninh.chinacdc.cn; zhenwuhuang1968@163.com
*Corresponding authors: Qin Wang, email wangqin@ninh.chinacdc.cn; Zhenwu Huang, email huangzw@ninh.chinacdc.cn; zhenwuhuang1968@163.com

Abstract

The aim of this study was to investigate the association between daily Se intake and postpartum weight retention (PPWR) among Chinese lactating women, and the impact of their Se nutritional status on infants’ physical development. Se contents in breast milk and plasma collected from 264 lactating Chinese women at the 42nd day postpartum were analysed with inductively coupled plasma MS. Daily Se intake was calculated based on plasma Se concentration. The dietary data of 24-h records on three consecutive days were collected. Infant growth status was evaluated with WHO standards by Z-scores. Linear regression analyses and multinomial logistic regression were conducted to examine the impact of Se disequilibrium (including other factors) on PPWR and growth of infants, respectively. The results indicated that: (1) the daily Se intake of the subjects was negatively associated with their PPWR (B = −0·002, 95 % CI − 0·003, 0·000, P = 0·039); (2) both insufficient Se daily intake (B = −0·001, OR 0·999, 95 % CI 0·998, 1·000, P = 0·014) and low level of Se in milk (B = −0·025, OR 0·975, 95 % CI 0·951, 0·999, P = 0·021) had potential associations with their infants’ wasting, and low level of Se in milk (B = −0·159, OR 0·853, 95 % CI 0·743, 0·980, P = 0·024) had a significant association with their infants’ overweight. In conclusion, the insufficient Se nutritional status of lactating Chinese women was first found as one possible influencing factor of their PPWR as well as low physical development of their offspring.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mannan, M, Doi, SA & Mamun, AA (2013) Association between weight gain during pregnancy and postpartum weight retention and obesity: a bias-adjusted meta-analysis. Nutr Rev 71, 343352.10.1111/nure.12034CrossRefGoogle ScholarPubMed
Picciano, MF (2003) Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 133, 1997S2002S.10.1093/jn/133.6.1997SCrossRefGoogle ScholarPubMed
Kirkegaard, H, Stovring, H, Rasmussen, KM, et al. (2014) How do pregnancy-related weight changes and breastfeeding relate to maternal weight and BMI-adjusted waist circumference 7 y after delivery? Results from a path analysis. Am J Clin Nutr 99, 312319.10.3945/ajcn.113.067405CrossRefGoogle Scholar
Poston, L, Caleyachetty, R, Cnattingius, S, et al. (2016) Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol 4, 10251036.10.1016/S2213-8587(16)30217-0CrossRefGoogle ScholarPubMed
Bogaerts, A, Van den Bergh, BR, Ameye, L, et al. (2013) Interpregnancy weight change and risk for adverse perinatal outcome. Obstet Gynecol 122, 9991009.10.1097/AOG.0b013e3182a7f63eCrossRefGoogle ScholarPubMed
Wang, J, Yang, ZY, Pang, XH, et al. (2016) The status of postpartum weight retention and its associated factors among Chinese lactating women in 2013. Chin J Prev Med 50, 10671073.Google ScholarPubMed
Huang, T, Brown, FM, Curran, A, et al. (2015) Association of pre-pregnancy BMI and postpartum weight retention with postpartum HbA1c among women with type 1 diabetes. Diabet Med 32, 181188.10.1111/dme.12617CrossRefGoogle ScholarPubMed
Rooney, BL, Schauberger, CW & Mathiason, MA (2005) Impact of perinatal weight change on long-term obesity and obesity-related illnesses. Obstet Gynecol 106, 13491356.10.1097/01.AOG.0000185480.09068.4aCrossRefGoogle ScholarPubMed
Williams, CB, Mackenzie, KC & Gahagan, S (2014) The effect of maternal obesity on the offspring. Clin Obstet Gynecol 57, 508515.10.1097/GRF.0000000000000043CrossRefGoogle ScholarPubMed
Goldstein, RF, Abell, SK, Ranasinha, S, et al. (2017) Association of gestational weight gain with maternal and infant outcomes: a systematic review and meta-analysis. JAMA 317, 22072225.10.1001/jama.2017.3635CrossRefGoogle ScholarPubMed
Nehring, I, Schmoll, S, Beyerlein, A, et al. (2011) Gestational weight gain and long-term postpartum weight retention: a meta-analysis. Am J Clin Nutr 94, 12251231.10.3945/ajcn.111.015289CrossRefGoogle ScholarPubMed
Ashley-Martin, J & Woolcott, C (2014) Gestational weight gain and postpartum weight retention in a cohort of Nova Scotian women. Matern Child Health J 18, 19271935.10.1007/s10995-014-1438-7CrossRefGoogle Scholar
Martin, JE, Hure, AJ, Macdonald-Wicks, L, et al. (2014) Predictors of post-partum weight retention in a prospective longitudinal study. Matern Child Nutr 10, 496509.10.1111/j.1740-8709.2012.00437.xCrossRefGoogle ScholarPubMed
Jaakkola, J, Hakala, P, Isolauri, E, et al. (2013) Eating behavior influences diet, weight, and central obesity in women after pregnancy. Nutrition 29, 12091213.10.1016/j.nut.2013.03.008CrossRefGoogle ScholarPubMed
Shao, HH, Hwang, LC, Huang, JP, et al. (2018) Postpartum weight retention risk factors in a Taiwanese cohort study. Obes Facts 11, 3745.10.1159/000484934CrossRefGoogle Scholar
Ha, AVV, Zhao, Y, Pham, NM, et al. (2019) Postpartum weight retention in relation to gestational weight gain and pre-pregnancy body mass index: a prospective cohort study in Vietnam. Obes Res Clin Pract 13, 143149.10.1016/j.orcp.2019.02.001CrossRefGoogle ScholarPubMed
Gallagher, K, Ralph, J, Petros, T, et al. (2019) Postpartum weight retention in primiparous women and weight outcomes in their offspring. J Midwifery Womens Health 64, 427434.10.1111/jmwh.12986CrossRefGoogle ScholarPubMed
Subhan, FB, Shulman, L, Yuan, Y, et al. (2019) Association of pre-pregnancy BMI and gestational weight gain with fat mass distribution and accretion during pregnancy and early postpartum: a prospective study of Albertan women. BMJ Open 9, e026908.10.1136/bmjopen-2018-026908CrossRefGoogle ScholarPubMed
Huang, Z, Li, N & Hu, YM (2019) Dietary patterns and their effects on postpartum weight retention of lactating women in South Central China. Nutrition 67–68, 110555.10.1016/j.nut.2019.110555CrossRefGoogle ScholarPubMed
Fadzil, F, Shamsuddin, K, Wan Puteh, SE, et al. Predictors of postpartum weight retention among urban Malaysian mothers: a prospective cohort study. Obes Res Clin Pract 12, 493499.10.1016/j.orcp.2018.06.003CrossRefGoogle Scholar
Chan, SM, Nelson, EA, Leung, SS, et al. (2000) Special postpartum dietary practices of Hong Kong Chinese women. Eur J Clin Nutr 54, 797802.10.1038/sj.ejcn.1601095CrossRefGoogle ScholarPubMed
Fowles, ER & Walker, LO (2006) Correlates of dietary quality and weight retention in postpartum women. J Community Health Nurs 23, 183197.10.1207/s15327655jchn2303_5CrossRefGoogle ScholarPubMed
Boghossian, NS, Yeung, EH, Lipsky, LM, et al. (2013) Dietary patterns in association with postpartum weight retention. Am J Clin Nutr 97, 13381345.10.3945/ajcn.112.048702CrossRefGoogle ScholarPubMed
Barrera, C, Valenzuela, R, Chamorro, R, et al. (2018) The impact of maternal diet during pregnancy and lactation on the fatty acid composition of erythrocytes and breast milk of Chilean women. Nutrients 10, 839.10.3390/nu10070839CrossRefGoogle ScholarPubMed
Vonnahme, KA, Lemley, CO, Caton, JS, et al. (2015) Impacts of maternal nutrition on vascularity of nutrient transferring tissues during gestation and lactation. Nutrients 7, 34973523.10.3390/nu7053497CrossRefGoogle ScholarPubMed
Fan, Y, Zhang, C & Bu, J (2017) Relationship between selected serum metallic elements and obesity in children and adolescent in the U.S. Nutrients 9, 104.10.3390/nu9020104CrossRefGoogle ScholarPubMed
Van Nhien, N, Yabutani, T, Khan, NC, et al. (2009) Association of low serum selenium with anemia among adolescent girls living in rural Vietnam. Nutrition 25, 610.10.1016/j.nut.2008.06.032CrossRefGoogle ScholarPubMed
Chen, MX, Liu, B, Wilkinson, D, et al. (2017) Selenoprotein P is elevated in individuals with obesity, but is not independently associated with insulin resistance. Obes Res Clin Pract 11, 227232.10.1016/j.orcp.2016.07.004CrossRefGoogle Scholar
Laclaustra, M, Stranges, S, Navas-Acien, A, et al. (2010) Serum selenium and serum lipids in US adults: national Health and Nutrition Examination Survey (NHANES) 2003–2004. Atherosclerosis 210, 643648.10.1016/j.atherosclerosis.2010.01.005CrossRefGoogle ScholarPubMed
Cavedon, E, Manso, J, Negro, I, et al. (2020) Selenium supplementation, body mass composition, and leptin levels in patients with obesity on a balanced mildly hypocaloric diet: a pilot study. Int J Endocrinol 2020, 4802739.10.1155/2020/4802739CrossRefGoogle ScholarPubMed
Xu, R, Chen, C, Zhou, Y, et al. (2018) Fingernail selenium levels in relation to the risk of obesity in Chinese children: a cross-sectional study. Medicine (Baltimore) 97, e0027.10.1097/MD.0000000000010027CrossRefGoogle ScholarPubMed
Larvie, DY, Doherty, JL, Donati, GL, et al. (2019) Relationship between selenium and hematological markers in young adults with normal weight or overweight/obesity. Antioxidants (Basel) 8, 463472.10.3390/antiox8100463CrossRefGoogle ScholarPubMed
Avery, J & Homann, P (2018) Selenium, selenoproteins, and immunity. Nutrients 10, 1203.10.3390/nu10091203CrossRefGoogle ScholarPubMed
Köhrle, J (2016) Selenium and endocrine tissues. In Selenium, pp. 389400 [Hatfield, DL, Schweizer, U, Tsuji, PA and Gladyshev, VN, editors]. Cham, Switzerland: Springer.10.1007/978-3-319-41283-2_33CrossRefGoogle Scholar
Sneddon, AA (2011) Selenium and vascular health. Pure Appl Chem 84, 239248.10.1351/PAC-CON-11-09-01CrossRefGoogle Scholar
Mistry, HD, Pipkin, FB, Redman, CW, et al. (2012) Selenium in reproductive health. Am J Obstet Gynecol 206, 2130.10.1016/j.ajog.2011.07.034CrossRefGoogle ScholarPubMed
Steinbrenner, H & Sies, H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536, 152157.10.1016/j.abb.2013.02.021CrossRefGoogle ScholarPubMed
Papp, LV, Holmgren, A & Khanna, KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Signal 12, 793795.10.1089/ars.2009.2973CrossRefGoogle ScholarPubMed
Lipinski, B (2019) Redox-active selenium in health and disease: a conceptual review. Mini Rev Med Chem 19, 720726.10.2174/1389557517666161104125022CrossRefGoogle ScholarPubMed
Steinbrenner, H (2013) Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 65, 15381547.10.1016/j.freeradbiomed.2013.07.016CrossRefGoogle ScholarPubMed
Ogawa-Wong, AN, Berry, MJ & Seale, LA (2016) Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Nutrients 8, 80.10.3390/nu8020080CrossRefGoogle ScholarPubMed
Vinceti, M, Filippini, T & Rothman, KJ (2018) Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol 33, 789810.10.1007/s10654-018-0422-8CrossRefGoogle ScholarPubMed
Lu, CW, Chang, HH, Yang, KC, et al. (2016) High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance. BMJ Open Diabetes Res Care 4, e000253.10.1136/bmjdrc-2016-000253CrossRefGoogle ScholarPubMed
Su, LQ, Jin, YL, Unverzagt, FW, et al. (2016) Nail selenium level and diabetes in older people in rural China. Biomed Environ Sci 29, 818824.Google ScholarPubMed
Wei, J, Zeng, C, Gong, QY, et al. (2015) The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults. Nutr J 14, 18.CrossRefGoogle ScholarPubMed
Oo, SM, Misu, H, Saito, Y, et al. (2018) Serum selenoprotein P, but not selenium, predicts future hyperglycemia in a general Japanese population. Sci Rep 8, 16727.10.1038/s41598-018-35067-2CrossRefGoogle ScholarPubMed
Kohrle, J, Jakob, F, Contempre, B, et al. (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26, 944984.10.1210/er.2001-0034CrossRefGoogle ScholarPubMed
Rayman, MP (2012) Selenium and human health. Lancet 379, 12561268.10.1016/S0140-6736(11)61452-9CrossRefGoogle ScholarPubMed
Roman, M, Jitaru, P & Barbante, C (2014) Selenium biochemistry and its role for human health. Metallomics 6, 2554.10.1039/C3MT00185GCrossRefGoogle ScholarPubMed
Guo, X, Zhou, L, Xu, J, et al. (2021) Prenatal maternal low selenium, high thyrotropin, and low birth weights. Biol Trace Elem Res 199, 1825.10.1007/s12011-020-02124-9CrossRefGoogle ScholarPubMed
Kumpulainen, J, Salmenperä, L, Siimes, MA, et al. (1985) Selenium status of exclusively breast-fed infants as influenced by maternal organic or inorganic selenium supplementation. Am J Clin Nutr 42, 829835.10.1093/ajcn/42.5.829CrossRefGoogle ScholarPubMed
Black, AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord 24, 11191130.10.1038/sj.ijo.0801376CrossRefGoogle ScholarPubMed
Han, F, Liu, LP, Lu, JX, et al. (2019) Calculation of an adequate intake (AI) value and safe range of selenium (Se) for Chinese infants 0–3 months old based on Se concentration in the milk of lactating Chinese women with optimal Se intake. Biol Trace Elem Res 188, 363372.10.1007/s12011-018-1440-9CrossRefGoogle ScholarPubMed
Yang, YX (2018) China Food Composition Tables, 6th ed. Beijing: Peking University Medical Press.Google Scholar
Institute of Medicine (US) (2009) Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: National Academies Press.Google Scholar
WHO Multicentre Growth Reference Study Group (2006) WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass index-for-Age: Methods and Development. Geneva: World Health Organization.Google Scholar
Yang, G, Yin, S, Zhou, R, et al. (1989) Studies of safe maximal daily dietary Se-intake in a seleniferous area in China. Part II: relation between Se-intake and the manifestation of clinical signs and certain biochemical alterations in blood and urine. J Trace Elem Electrolytes Health Dis 3, 123130.Google Scholar
Chinese Nutrition Society (2014) Chinese Dietary Reference Intakes (DRIs). Beijing: Science Press.Google Scholar
Textor, J, van der Zander, B, Gilthorpe, MS, et al. (2016) Robust causal inference using directed acyclic graphs: the R package “dagitty”. Int J Epidemiol 45, 18871894.Google Scholar
Zhong, Q, Lin, R & Nong, Q (2018) Adiposity and serum selenium in US adults. Nutrients 10, 727.CrossRefGoogle Scholar
Ortega, RM, Rodríguez-Rodríguez, E, Aparicio, A, et al. (2012) Young children with excess of weight show an impaired selenium status. Int J Vitam Nutr Res 82, 121129.10.1024/0300-9831/a000101CrossRefGoogle ScholarPubMed
Ghayour-Mobarhan, M, Taylor, A, New, SA, et al. (2005) Determinants of serum copper, zinc and selenium in healthy subjects. Ann Clin Biochem 42, 364375.CrossRefGoogle ScholarPubMed
Spina, A, Guallar, E, Rayman, MP, et al. (2013) Anthropometric indices and selenium status in British adults: the U.K. National Diet and Nutrition Survey. Free Radic Biol Med 65, 13151321.10.1016/j.freeradbiomed.2013.09.025CrossRefGoogle ScholarPubMed
Suadicani, P, Hein, HO & Gyntelberg, F (1992) Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3000 males. Atherosclerosis 96, 3342.10.1016/0021-9150(92)90035-FCrossRefGoogle Scholar
Park, SH, Kim, JH, Nam, SW, et al. (2014) Selenium improves stem cell potency by stimulating the proliferation and active migration of 3T3-L1 preadipocytes. Int J Oncol 44, 336342.10.3892/ijo.2013.2182CrossRefGoogle ScholarPubMed
Hassan, A, Ahn, J, Suh, Y, et al. (2014) Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis. J Nutr Biochem 25, 858867.10.1016/j.jnutbio.2014.03.018CrossRefGoogle ScholarPubMed
Yoon, SO, Kim, MM, Park, SJ, et al. (2002) Selenite suppresses hydrogen peroxide-induced cell apoptosis through inhibition of ASK1/JNK and activation of PI3-K/Akt pathways. FASEB J 16, 111113.10.1096/fj.01-0398fjeCrossRefGoogle ScholarPubMed
Yoon, SO, Kim, MM, Park, SJ, et al. (2009) AMP-activated kinase regulates adipocyte differentiation process in 3T3-L1 adipocytes treated with selenium. J Life Sci 19, 423428.Google Scholar
Shon, MS, Song, JH & Kim, GN (2013) Anti-obese function of selenate, an essential micronutrient, by regulation of adipogenesis in C3H10T1/2 cells. Korean J Aesthet Cosmetol 11, 447452.Google Scholar
Kim, C & Kim, KH (2018) Selenate prevents adipogenesis through induction of selenoprotein S and attenuation of endoplasmic reticulum stress. Molecules 23, 2882.CrossRefGoogle ScholarPubMed
Kim, CY, Kim, GN, Wiacek, JL, et al. (2012) Selenate inhibits adipogenesis through induction of transforming growth factor-β1 (TGF-β1) signaling. Biochem Biophys Res Commun 426, 551557.10.1016/j.bbrc.2012.08.125CrossRefGoogle ScholarPubMed
Wiacek, JL & Kim, KH (2010) Sodium selenate inhibits adipogenesis in vitro . FASEB J 24, 547548.10.1096/fasebj.24.1_supplement.547.8CrossRefGoogle Scholar
Suh, N & Lee, EB (2017) Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells. BMB Rep 50, 572577.CrossRefGoogle ScholarPubMed
Tinkov, AA, Ajsuvakova, OP, Filippini, T, et al. (2020) Selenium and selenoproteins in adipose tissue physiology and obesity. Biomolecules 10, 658.CrossRefGoogle ScholarPubMed
Donovan, J & Copeland, PR (2010) The efficiency of selenocysteine incorporation is regulated by translation initiation factors. J Mol Biol 400, 659664.10.1016/j.jmb.2010.05.026CrossRefGoogle ScholarPubMed
Parks, BW, Nam, E, Org, E, et al. (2013) Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17, 141152.10.1016/j.cmet.2012.12.007CrossRefGoogle ScholarPubMed
Seale, LA (2019) Selenocysteine β-lyase: biochemistry, regulation and physiological role of the selenocysteine decomposition enzyme. Antioxidants (Basel) 8, 357.10.3390/antiox8090357CrossRefGoogle ScholarPubMed
Tinkov, AA, Bjørklund, G, Skalny, AV, et al. (2018) The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 75, 15671586.10.1007/s00018-018-2745-8CrossRefGoogle ScholarPubMed
Brigelius-Flohé, R & Flohé, L (2020) Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal 33, 498516.10.1089/ars.2019.7905CrossRefGoogle ScholarPubMed
Pitts, MW & Hoffmann, PR (2018) Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 70, 7686.10.1016/j.ceca.2017.05.001CrossRefGoogle ScholarPubMed
Tang, X, Li, J, Zhao, WG, et al. (2019) Comprehensive map and functional annotation of the mouse white adipose tissue proteome. PeerJ 7, e7352.10.7717/peerj.7352CrossRefGoogle ScholarPubMed
Zhao, H, Li, K, Tang, JY, et al. (2015) Expression of selenoprotein genes is affected by obesity of pigs fed a high-fat diet. J Nutr 145, 13941401.10.3945/jn.115.211318CrossRefGoogle Scholar
Hardie, DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33, 17.10.1016/j.ceb.2014.09.004CrossRefGoogle ScholarPubMed
Carreras, O, Ojeda, ML, Nogales, F (2016) Chapter 11 – Selenium dietary supplementation and oxidative balance in alcoholism. In Molecular Aspects of Alcohol and Nutrition, pp. 133142 [Vinood, BP, editor]. London: Academic Press.10.1016/B978-0-12-800773-0.00011-2CrossRefGoogle Scholar
Steinbrenner, H, Speckmann, B, Pinto, A, et al. (2011) High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr 48, 4045.10.3164/jcbn.11-002FRCrossRefGoogle ScholarPubMed
Lewandowska, M, Sajdak, S & Lubiński, J (2019) The role of early pregnancy maternal selenium levels on the risk for small-for-gestational age newborns. Nutrients 11, 22982307.10.3390/nu11102298CrossRefGoogle ScholarPubMed
Tindell, R & Tipple, T (2018) Selenium: implications for outcomes in extremely preterm infants. J Perinatol 38, 197202.10.1038/s41372-017-0033-3CrossRefGoogle ScholarPubMed
Wang, K, Yu, J, Liu, H, et al. (2019) Endemic Kashin-Beck disease: a food-sourced osteoarthropathy. Semin Arthritis Rheum 50, 366372.10.1016/j.semarthrit.2019.07.014CrossRefGoogle ScholarPubMed
Xie, D, Liao, Y, Yue, J, et al. (2018) Effects of five types of selenium supplementation for treatment of Kashin-Beck disease in children: a systematic review and network meta-analysis. BMJ Open 8, e017883.CrossRefGoogle ScholarPubMed
St Germain, DL & Galton, VA (1997) The deiodinase family of selenoproteins. Thyroid 7, 655668.10.1089/thy.1997.7.655CrossRefGoogle ScholarPubMed
Meinhold, H, Campos-Barros, A, Walzog, B, et al. (1993) Effects of selenium and iodine deficiency on type I, type II and type III iodothyronine deiodinases and circulating thyroid hormones in the rat. Exp Clin Endocrinol 101, 8793.CrossRefGoogle ScholarPubMed
Hefnawy, AE, Youssef, S, Aguilera, PV, et al. (2014) The relationship between selenium and T3 in selenium supplemented and nonsupplemented ewes and their lambs. Vet Med Int 2014, 105236.10.1155/2014/105236CrossRefGoogle ScholarPubMed
Rossiter, MD, Colapinto, CK, Khan, MK, et al. (2015) Breast, formula and combination feeding in relation to childhood obesity in Nova Scotia, Canada. Matern Child Health 19, 20482056.10.1007/s10995-015-1717-yCrossRefGoogle ScholarPubMed
Natale, V & Rajagopalan, A (2014) Worldwide variation in human growth and the World Health Organization growth standards: a systematic review. BMJ Open 4, e003735.10.1136/bmjopen-2013-003735CrossRefGoogle ScholarPubMed
Roelants, M, Hauspie, R & Hoppenbrouwers, K (2010) Breastfeeding, growth and growth standards: performance of the WHO growth standards for monitoring growth of Belgian children. Ann Hum Biol 37, 29.CrossRefGoogle ScholarPubMed
Supplementary material: File

Han et al. supplementary material

Han et al. supplementary material

Download Han et al. supplementary material(File)
File 3 MB
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low selenium intake is associated with postpartum weight retention in Chinese women and impaired physical development of their offspring
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Low selenium intake is associated with postpartum weight retention in Chinese women and impaired physical development of their offspring
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Low selenium intake is associated with postpartum weight retention in Chinese women and impaired physical development of their offspring
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *