Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-2p87r Total loading time: 0.38 Render date: 2021-10-20T05:08:48.031Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Iron status of full-term infants in early infancy is not associated with maternal ferritin levels nor infant feeding practice

Published online by Cambridge University Press:  09 June 2021

Kate C. Chan
Affiliation:
Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
Joseph G. S. Tsun
Affiliation:
Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
Albert M. Li
Affiliation:
Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
Wing Hung Tam*
Affiliation:
Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
*
*Corresponding author: Wing Hung Tam, email tamwh@cuhk.edu.hk

Abstract

Iron deficiency (ID) in early life is associated with morbidities. Most fetal iron required for infant growth is acquired in the third trimester from maternal iron store. However, how prenatal iron level affects ferritin level in early infancy remains controversial. This study aimed to examine the associations between maternal ferritin levels and cord blood serum ferritin (CBSF) and to compare the ferritin levels between different feeding practices in early infancy. Healthy Chinese mothers with uncomplicated pregnancy and their infants were followed up at 3 months post-delivery for questionnaire completion and infant blood collection. Infants who were predominantly breastfed and those who were predominantly formula fed were included in this analysis. Serum ferritin levels were measured in maternal blood samples collected upon delivery, cord blood and infant blood samples at 3 months of age. Ninety-seven mother–baby dyads were included. Maternal ID is common (56 %) while the CBSF levels were significantly higher than maternal ferritin levels. Only three infants (3 %) had ID at 3 months of age. There were no significant correlations between maternal ferritin levels with CBSF (r 0·168, P = 0·108) nor with infant ferritin levels at 3 months of age (r 0·023, P = 0·828). Infant ferritin levels at 3 months were significantly and independently associated with CBSF (P = 0·007) and birth weight (P < 0·001) after adjusting for maternal age, parity, maternal education, infant sex and feeding practice. In conclusion, maternal ID was common upon delivery. However, maternal ferritin levels were not significantly associated with CBSF concentrations nor infant ferritin concentrations at 3 months of age.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, RD, Greer, FR & Committee on Nutrition American Academy of Pediatrics (2010) Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics 126, 10401050.CrossRefGoogle Scholar
Lopez, A, Cacoub, P & Macdougall, IC, et al. (2016) Iron deficiency anaemia. Lancet 387, 907916.CrossRefGoogle ScholarPubMed
Esen, UI (2017) Iron deficiency anaemia in pregnancy: the role of parenteral iron. J Obstet Gynaecol 37, 1518.CrossRefGoogle ScholarPubMed
Juul, SE, Derman, RJ & Auerbach, M (2019) Perinatal iron deficiency: implications for mothers and infants. Neonatology 115, 269274.CrossRefGoogle ScholarPubMed
Lozoff, B & Georgieff, MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13, 158165.CrossRefGoogle ScholarPubMed
Radlowski, EC & Johnson, RW (2013) Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci 7, 585.CrossRefGoogle ScholarPubMed
Weiss, G (2005) Modification of iron regulation by the inflammatory response. Best Pract Res Clin Haematol 18, 183201.CrossRefGoogle ScholarPubMed
Nwaru, BI, Hayes, H, Gambling, L, et al. (2014) An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy. Br J Nutr 112, 20182027.CrossRefGoogle ScholarPubMed
Shaheen, SO, Newson, RB, Henderson, AJ, et al. (2004) Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur Respir J 24, 292297.CrossRefGoogle ScholarPubMed
Weigert, R, Dosch, NC, Bacsik-Campbell, ME, et al. (2015) Maternal pregnancy weight gain and cord blood iron status are associated with eosinophilia in infancy. J Perinatol 35, 621626.CrossRefGoogle ScholarPubMed
Cai, X, Wardlaw, T & Brown, DW (2012) Global trends in exclusive breastfeeding. Int Breastfeed J 7, 12.CrossRefGoogle ScholarPubMed
WHO (2018) Guideline: counselling of women to improve breastfeeding practices. https://www.who.int/publications/i/item/9789241550468 (accessed May 2021).Google Scholar
Calvo, EB, Galindo, AC & Aspres, NB (1992) Iron status in exclusively breast-fed infants. Pediatrics 90, 375379.Google ScholarPubMed
Maguire, JL, Salehi, L, Birken, CS, et al. (2013) Association between total duration of breastfeeding and iron deficiency. Pediatrics 131, e15301537.CrossRefGoogle ScholarPubMed
Clark, KM, Li, M, Zhu, B, et al. (2017) Breastfeeding, mixed, or formula feeding at 9 months of age and the prevalence of iron deficiency and iron deficiency anemia in two cohorts of infants in China. J Pediatr 181, 5661.CrossRefGoogle ScholarPubMed
Auerbach, M, Abernathy, J, Juul, S, et al. (2019) Prevalence of iron deficiency in first trimester, nonanemic pregnant women. J Matern Fetal Neonatal Med 34, 10021005.CrossRefGoogle ScholarPubMed
Lozoff, B, Kaciroti, N & Walter, T (2006) Iron deficiency in infancy: applying a physiologic framework for prediction. Am J Clin Nutr 84, 14121421.CrossRefGoogle ScholarPubMed
Pavord, S, Daru, J, Prasannan, N, et al. (2020) UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 188, 819830.CrossRefGoogle ScholarPubMed
Sanni, OB, Chambers, T, Li, JH, et al. (2020) A systematic review and meta-analysis of the correlation between maternal and neonatal iron status and haematologic indices. EClinicalMedicine 27, 100555.CrossRefGoogle ScholarPubMed
Kumar, A, Rai, AK, Basu, S, et al. (2008) Cord blood and breast milk iron status in maternal anemia. Pediatrics 121, e673677.CrossRefGoogle ScholarPubMed
Agrawal, RM, Tripathi, AM & Agarwal, KN (1983) Cord blood haemoglobin, iron and ferritin status in maternal anaemia. Acta Paediatr Scand 72, 545548.CrossRefGoogle ScholarPubMed
Singla, PN, Chand, S, Khanna, S, et al. (1978) Effect of maternal anaemia on the placenta and the newborn infant. Acta Paediatr Scand 67, 645648.CrossRefGoogle ScholarPubMed
Sweet, DG, Savage, G, Tubman, TR, et al. (2001) Study of maternal influences on fetal iron status at term using cord blood transferrin receptors. Arch Dis Child Fetal Neonatal Ed 84, F40F43.CrossRefGoogle ScholarPubMed
Gaspar, MJ, Ortega, RM & Moreiras, O (1993) Relationship between iron status in pregnant women and their newborn babies. Investigation in a Spanish population. Acta Obstet Gynecol Scand 72, 534537.CrossRefGoogle Scholar
Yuen, LY, Chan, MHM, Sahota, DS, et al. (2020) Development of gestational age-specific thyroid function test reference intervals in four analytic platforms through multilevel modeling. Thyroid 30, 598608.CrossRefGoogle ScholarPubMed
Gallo, S, Comeau, K, Vanstone, C, et al. (2013) Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants: a randomized trial. JAMA 309, 17851792.CrossRefGoogle ScholarPubMed
WHO (2011) Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. https://www.who.int/vmnis/indicators/serum_ferritin.pdf (assessed May 2021).Google Scholar
WHO & CDC (2007) Assessing the Iron Status of Populations: including Literature Reviews. Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level, 2nd ed. Geneva: WHO/CDC.Google Scholar
Machin, D, Campbell, M, et al. (1997) Sample Size Tables for Clinical Studies. Second Ed. Blackwell Science IBSN 0–86542–870–0 p.135.Google Scholar
Shao, J, Lou, J, Rao, R, et al. (2012) Maternal serum ferritin concentration is positively associated with newborn iron stores in women with low ferritin status in late pregnancy. J Nutr 142, 20042009.CrossRefGoogle ScholarPubMed
Sangkhae, V & Nemeth, E (2019) Placental iron transport: the mechanism and regulatory circuits. Free Radic Biol Med 133, 254261.CrossRefGoogle ScholarPubMed
Rehu, M, Punnonen, K, Ostland, V, et al. (2010) Maternal serum hepcidin is low at term and independent of cord blood iron status. Eur J Haematol 85, 345352.CrossRefGoogle Scholar
Sangkhae, V, Fisher, AL, Wong, S, et al. (2020) Effects of maternal iron status on placental and fetal iron homeostasis. J Clin Invest 130, 625640.CrossRefGoogle ScholarPubMed
Lee, S, Guillet, R, Cooper, EM, et al. (2014) Maternal inflammation at delivery affects assessment of maternal iron status. J Nutr 144, 15241532.CrossRefGoogle ScholarPubMed
Daru, J, Colman, K, Stanworth, SJ, et al. (2017) Serum ferritin as an indicator of iron status: what do we need to know? Am J Clin Nutr 106, S1634S1639.CrossRefGoogle ScholarPubMed
Centre for Food Safety (2014) Regulation for formula products and foods for infants and Young Children. https://www.cfs.gov.hk/english/food_leg/food_leg_Formula_Products_for_Infants.html (accessed May 2021).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Iron status of full-term infants in early infancy is not associated with maternal ferritin levels nor infant feeding practice
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Iron status of full-term infants in early infancy is not associated with maternal ferritin levels nor infant feeding practice
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Iron status of full-term infants in early infancy is not associated with maternal ferritin levels nor infant feeding practice
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *