Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-xvx2z Total loading time: 0.258 Render date: 2021-08-04T10:41:34.778Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Higher flavonoid intake is associated with a lower progression risk of non-alcoholic fatty liver disease in adults: a prospective study

Published online by Cambridge University Press:  27 July 2020

Qing-wei Zhong
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People’s Republic of China
Yan-yan Wu
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People’s Republic of China
Feng Xiong
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People’s Republic of China
Meng Liu
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People’s Republic of China
Yu-ping Liu
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People’s Republic of China
Cheng Wang
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People’s Republic of China Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Guangzhou 510120, Guangdong, People’s Republic of China
Yu-ming Chen
Affiliation:
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, People’s Republic of China
Corresponding
E-mail address:

Abstract

Flavonoid-rich foods have shown a beneficial effect against non-alcoholic fatty liver disease (NAFLD) in short-term randomised trials. It is uncertain whether the usual dietary intake of flavonoids may benefit patients with NAFLD. The present study evaluated the association between the usual intake of flavonoids and the risk of progression in NAFLD. The prospective study included 2694 adults from the Guangzhou Nutrition and Health Study. Face-to-face interviews using a seventy-nine-item FFQ were administered to assess habitual dietary flavonoid intake, while abdominal ultrasonography was conducted to evaluate the presence and degree of NAFLD, with measurements conducted 3 years apart. After adjustment for potential confounders, higher flavonoid intakes were gradely associated with reduced risks of worsen NAFLD status. The relative risks of worsening (v. non-worsening) NAFLD in the highest (v. lowest) quintile were 0·71 (95 % CI 0·54, 0·93) for total flavonoids, 0·74 (95 % CI 0·57, 0·95) for flavanones, 0·74 (95 % CI 0·56, 0·96) for flavan-3-ols, 0·90 (95 % CI 0·68, 1·18) for flavonols, 0·73 (95 % CI 0·56, 0·93) for flavones, 0·79 (95 % CI 0·61, 1·02) for isoflavones and 0·74 (95 % CI 0·57, 0·96) for anthocyanins. An L-shaped relationship was observed between total flavonoid intake and the risk of NAFLD progression. Path analyses showed that the association between flavonoids and NAFLD progression was mediated by decreases in serum cholesterol and homeostasis model assessment of insulin resistance. This prospective study showed that higher flavonoid intake was associated with a lower risk of NAFLD progression in the elderly overweight/obese Chinese population.

Type
Full Papers
Copyright
© The Author(s), 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Dietrich, P & Hellerbrand, C (2014) Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol 28, 637653.CrossRefGoogle ScholarPubMed
Fan, JG (2013) Epidemiology of alcoholic and nonalcoholic fatty liver disease in China. J Gastroenterol Hepatol 28, Suppl. 1, 1117.CrossRefGoogle ScholarPubMed
Manne, V, Handa, P & Kowdley, KV (2018) Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis 22, 2337.CrossRefGoogle ScholarPubMed
Ross, JA & Kasum, CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22, 1934.CrossRefGoogle ScholarPubMed
Fan, JG & Cao, HX (2013) Role of diet and nutritional management in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 28, Suppl. 4, 8187.CrossRefGoogle ScholarPubMed
Madan, K, Bhardwaj, P, Thareja, S, et al. (2006) Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J Clin Gastroenterol 40, 930935.CrossRefGoogle Scholar
Ferramosca, A, Di Giacomo, M & Zara, V (2017) Antioxidant dietary approach in treatment of fatty liver: new insights and updates. World J Gastroenterol 23, 41464157.CrossRefGoogle ScholarPubMed
Rodriguez-Ramiro, I, Vauzour, D & Minihane, AM (2016) Polyphenols and non-alcoholic fatty liver disease: impact and mechanisms. Proc Nutr Soc 75, 4760.CrossRefGoogle ScholarPubMed
Sohrab, G, Ebrahimof, S, Hosseinpour-Niazi, S, et al. (2018) Association of dietary intakes of total polyphenol and its subclasses with the risk of metabolic syndrome: Tehran Lipid and Glucose Study. Metab Syndr Relat Disord 16, 274281.CrossRefGoogle ScholarPubMed
Jennings, A, Welch, AA, Spector, T, et al. (2014) Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 144, 202208.CrossRefGoogle ScholarPubMed
Mazidi, M, Katsiki, N & Banach, M (2019) A higher flavonoid intake is associated with less likelihood of nonalcoholic fatty liver disease: results from a multiethnic study. J Nutr Biochem 65, 6671.CrossRefGoogle ScholarPubMed
Oki, T, Kano, M, Ishikawa, F, et al. (2017) Double-blind, placebo-controlled pilot trial of anthocyanin-rich purple sweet potato beverage on serum hepatic biomarker levels in healthy Caucasians with borderline hepatitis. Eur J Clin Nutr 71, 290292.CrossRefGoogle ScholarPubMed
Zhang, PW, Chen, FX, Li, D, et al. (2015) A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine 94, e758.CrossRefGoogle ScholarPubMed
Sakata, R, Nakamura, T, Torimura, T, et al. (2013) Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: a double-blind placebo-controlled study. Int J Mol Med 32, 989994.CrossRefGoogle ScholarPubMed
Liu, YT, Dai, JJ, Xu, CH, et al. (2012) Greater intake of fruit and vegetables is associated with lower risk of nasopharyngeal carcinoma in Chinese adults: a case–control study. Cancer Causes Control 23, 589599.CrossRefGoogle ScholarPubMed
Zhang, CX & Ho, SC (2009) Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18, 240250.Google ScholarPubMed
Chan, SG, Murphy, PA, Ho, SC, et al. (2009) Isoflavonoid content of Hong Kong soy foods. J Agric Food Chem 57, 53865390.CrossRefGoogle ScholarPubMed
Graif, M, Yanuka, M, Baraz, M, et al. (2000) Quantitative estimation of attenuation in ultrasound video images: correlation with histology in diffuse liver disease. Invest Radiol 35, 319324.CrossRefGoogle ScholarPubMed
Chen, YM, Liu, Y, Zhou, RF, et al. (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6, 19076.CrossRefGoogle ScholarPubMed
Xiao, ML, Chen, GD, Zeng, FF, et al. (2019) Higher serum carotenoids associated with improvement of non-alcoholic fatty liver disease in adults: a prospective study. Eur J Nutr 58, 721730.CrossRefGoogle ScholarPubMed
Chen, W, Qian, L, Shi, J, et al. (2018) Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification. BMC Med Res Methodol 18, 63.CrossRefGoogle ScholarPubMed
Zeng, Q, He, Y, Dong, S, et al. (2014) Optimal cut-off values of BMI, waist circumference and waist: height ratio for defining obesity in Chinese adults. Br J Nutr 112, 17351744.CrossRefGoogle ScholarPubMed
Buzzetti, E, Pinzani, M & Tsochatzis, EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 10381048.CrossRefGoogle Scholar
Zhu, X, Xiong, T, Liu, P, et al. (2018) Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol 114, 5260.CrossRefGoogle ScholarPubMed
Rafiei, H, Omidian, K & Bandy, B (2019) Phenolic breakdown products of cyanidin and quercetin contribute to protection against mitochondrial impairment and reactive oxygen species generation in an in vitro model of hepatocyte steatosis. J Agric Food Chem 67, 62416247.CrossRefGoogle Scholar
Assini, JM, Mulvihill, EE, Sutherland, BG, et al. (2013) Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr (-)/(-) mice. J Lipid Res 54, 711724.CrossRefGoogle ScholarPubMed
Sharma, AK, Bharti, S, Ojha, S, et al. (2011) Up-regulation of PPARgamma, heat shock protein-27 and −72 by naringin attenuates insulin resistance, beta-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 106, 17131723.CrossRefGoogle Scholar
Akhlaghi, M (2016) Non-alcoholic fatty liver disease: beneficial effects of flavonoids. Phytother Res 30, 15591571.CrossRefGoogle ScholarPubMed
Capurso, C & Capurso, A (2012) From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol 57, 9197.CrossRefGoogle ScholarPubMed
Van De Wier, B, Koek, GH, Bast, A, et al. (2017) The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr 57, 834855.CrossRefGoogle ScholarPubMed
Qu, R, Jia, Y, Liu, J, et al. (2018) Dietary flavonoids, copper intake, and risk of metabolic syndrome in Chinese adults. Nutrients 10, 991.CrossRefGoogle ScholarPubMed
Cassidy, A, Rogers, G, Peterson, JJ, et al. (2015) Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of USA adults. Am J Clin Nutr 102, 172181.CrossRefGoogle Scholar
Oh, JS, Kim, H, Vijayakumar, A, et al. (2017) Association of dietary flavonoid intake with prevalence of type 2 diabetes mellitus and cardiovascular disease risk factors in Korean women aged >/=30 years. J Nutr Sci Vitaminol 63, 5158.CrossRefGoogle Scholar
Mahmoodi, M, Hosseini, R, Kazemi, A, et al. (2020) Effects of green tea or green tea catechin on liver enzymes in healthy individuals and people with nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized clinical trials. Phytother Res 34, 15871598.CrossRefGoogle ScholarPubMed
Brull, V, Burak, C, Stoffel-Wagner, B, et al. (2017) No effects of quercetin from onion skin extract on serum leptin and adiponectin concentrations in overweight-to-obese patients with (pre-)hypertension: a randomized double-blinded, placebo-controlled crossover trial. Eur J Nutr 56, 22652275.CrossRefGoogle ScholarPubMed
Bar-Meir, S, Halpern, Z, Gutman, M, et al. (1985) Effect of (+)-cyanidanol-3 on chronic active hepatitis: a double blind controlled trial. Gut 26, 975979.CrossRefGoogle ScholarPubMed
Wei, JL, Leung, JC, Loong, TC, et al. (2015) Prevalence and severity of nonalcoholic fatty liver disease in non-obese patients: a Population Study using proton-magnetic resonance spectroscopy. Am J Gastroenterol 110, 13061314.CrossRefGoogle ScholarPubMed
Aller, R, Laserna, C, Rojo, MA, et al. (2018) Role of the PNPLA3 polymorphism rs738409 on silymarin + vitamin E response in subjects with non-alcoholic fatty liver disease. Rev Esp Enferm Dig 110, 634640.CrossRefGoogle ScholarPubMed
Cassidy, A & Minihane, AM (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105, 1022.CrossRefGoogle ScholarPubMed
Jia, Y, Ma, Y, Cheng, G, et al. (2019) Comparative study of dietary flavonoids with different structures as alpha-glucosidase inhibitors and insulin sensitizers. J Agric Food Chem 67, 10.52110.533.CrossRefGoogle ScholarPubMed
Yang, X, Wang, T, Guo, J, et al. (2019) Dietary flavonoids scavenge hypochlorous acid via chlorination on A- and C-rings as primary reaction sites: structure and reactivity relationship. J Agric Food Chem 67, 43464354.CrossRefGoogle ScholarPubMed
Lin, S, Zhang, G, Liao, Y, et al. (2015) Dietary flavonoids as santhine oxidase inhibitors: structure-affinity and structure-activity relationships. J Agric Food Chem 63, 77847794.CrossRefGoogle Scholar
Zamora-Ros, R, Forouhi, NG, Sharp, SJ, et al. (2014) Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J Nutr 144, 335343.CrossRefGoogle ScholarPubMed
Kataja-Tuomola, MK, Kontto, JP, Mannisto, S, et al. (2011) Intake of antioxidants and risk of type 2 diabetes in a cohort of male smokers. Eur J Clin Nutr 65, 590597.CrossRefGoogle Scholar
Song, Y, Manson, JE, Buring, JE, et al. (2005) Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24, 376384.CrossRefGoogle ScholarPubMed
Tian, Y, Laaksonen, O, Haikonen, H, et al. (2019) Compositional diversity among blackcurrant (Ribes nigrum) cultivars originating from European countries. J Agric Food Chem 67, 56215633.CrossRefGoogle ScholarPubMed
Pinto, P & Santos, CN (2017) Worldwide (poly)phenol intake: assessment methods and identified gaps. Eur J Nutr 56, 13931408.CrossRefGoogle ScholarPubMed
Browning, JD, Szczepaniak, LS, Dobbins, R, et al. (2004) Prevalence of hepatic steatosis in an urban population in the USA: impact of ethnicity. Hepatology 40, 13871395.CrossRefGoogle Scholar
Supplementary material: Image

Zhong et al. supplementary material

Zhong et al. supplementary material 1

Download Zhong et al. supplementary material(Image)
Image 5 MB
Supplementary material: File

Zhong et al. supplementary material

Zhong et al. supplementary material 2

Download Zhong et al. supplementary material(File)
File 34 KB
Supplementary material: Image

Zhong et al. supplementary material

Zhong et al. supplementary material 3

Download Zhong et al. supplementary material(Image)
Image 4 MB
Supplementary material: Image

Zhong et al. supplementary material

Zhong et al. supplementary material 4

Download Zhong et al. supplementary material(Image)
Image 5 MB
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Higher flavonoid intake is associated with a lower progression risk of non-alcoholic fatty liver disease in adults: a prospective study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Higher flavonoid intake is associated with a lower progression risk of non-alcoholic fatty liver disease in adults: a prospective study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Higher flavonoid intake is associated with a lower progression risk of non-alcoholic fatty liver disease in adults: a prospective study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *