Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-mdtzd Total loading time: 0.235 Render date: 2021-10-17T07:32:20.259Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

High glucose induces apoptosis, glycogen accumulation and suppresses protein synthesis in muscle cells of olive flounder Paralichthys olivaceus

Published online by Cambridge University Press:  14 July 2021

Jiahuan Liu
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
Mingzhu Pan
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
Dong Huang
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
Jing Wu
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
Yue Liu
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
Yanlin Guo
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
Wenbing Zhang*
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
Kangsen Mai
Affiliation:
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People’s Republic of China
*
*Corresponding author: Wenbing Zhang, email wzhang@ouc.edu.cn

Abstract

The effect and the mechanism of high glucose on fish muscle cells are not fully understood. In the present study, muscle cells of olive flounder (Paralichthys olivaceus) were treated with high glucose (33 mM) in vitro. Cells were incubated in three kinds of medium containing 5 mM glucose, 5 mM glucose and 28 mM mannitol (as an isotonic contrast) or 33 mM glucose named the Control group, the Mannitol group and the high glucose (HG) group, respectively. Results showed that high glucose increased the ADP:ATP ratio and the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (MMP), induced the release of cytochrome C (CytC) and cell apoptosis. High glucose also led to cell glycogen accumulation by increasing the glucose uptake ability and affecting the mRNA expressions of glycogen synthase and glycogen phosphorylase. Meanwhile, it activated AMP-activated protein kinase (AMPK), inhibited the activity of mammalian target of rapamycin (mTOR) signalling pathway and the expressions of myogenic regulatory factors (MRF). The expressions of myostatin-1 (mstn-1) and E3 ubiquitin ligases including muscle RING-finger protein 1 (murf-1) and muscle atrophy F-box protein (mafbx) were also increased by the high glucose treatment. No difference was found between the Mannitol group and the Control group. These results demonstrate that high glucose has the effects of inducing apoptosis, increasing glycogen accumulation and inhibiting protein synthesis on muscle cells of olive flounder. The mitochondria-mediated apoptotic signalling pathway, AMPK and mTOR pathways participated in these biological effects.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azaza, MS, Khiari, N, Dhraief, MN, et al. (2015) Growth performance, oxidative stress indices and hepatic carbohydrate metabolic enzymes activities of juvenile Nile tilapia, O reochromis niloticus L., in response to dietary starch to protein ratios. Aquacult Res 46, 1427.CrossRefGoogle Scholar
Zhou, CP, Ge, XP, Liu, B, et al. (2013) Effect of high dietary carbohydrate on the growth performance and physiological responses of juvenile wuchang bream, Megalobrama Amblycephala. Asian-Australas J Anim Sci 26, 1598.CrossRefGoogle ScholarPubMed
Liu, J, Deng, K, Pan, M, et al. (2020) Dietary carbohydrates influence muscle texture of olive flounder Paralichthys olivaceus through impacting mitochondria function and metabolism of glycogen and protein. Sci Rep 10, 120.CrossRefGoogle ScholarPubMed
Suárez, MD, Martínez, TF, Abellán, E, et al. (2009) The effects of the diet on flesh quality of farmed dentex (Dentex dentex). Aquacult 288, 106113.CrossRefGoogle Scholar
Skjervold, PO, Fjæra, SO, Østby, PB, et al. (2001) Live-chilling and crowding stress before slaughter of Atlantic salmon (Salmo salar). Aquaculture 192, 265280.CrossRefGoogle Scholar
Torgersen, JS, Koppang, EO, Stien, LH, et al. (2014) Soft texture of Atlantic salmon fillets is associated with glycogen accumulation. PLoS One 9, e85551.CrossRefGoogle ScholarPubMed
Liu, B, Xie, J, Ge, X, et al. (2012) Effect of high dietary carbohydrate on growth, serum physiological response, and hepatic heat shock cognate protein 70 expression of the top-mouth culter Erythroculter ilishaeformis Bleeker. Fish Sci 78, 613623.CrossRefGoogle Scholar
Wang, X, Feng, Z, Li, J, et al. (2016) High glucose induces autophagy of MC3T3-E1 cells via ROS-AKT-mTOR axis. Mol Cell Endocrinol 429, 6272.CrossRefGoogle ScholarPubMed
Tiong, YL, Ng, KY, Koh, RY, et al. (2019) Melatonin prevents oxidative stress-induced mitochondrial dysfunction and apoptosis in high glucose-treated schwann cells via upregulation of Bcl2, NF-κB, mTOR, Wnt signalling pathways. Antioxidants 8, 198.CrossRefGoogle Scholar
Salami, SA, Majoka, MA, Saha, S, et al. (2015) Efficacy of dietary antioxidants on broiler oxidative stress, performance and meat quality: science and market. Avian Biol Res 8, 6578.CrossRefGoogle Scholar
Zhang, W, Xiao, S, Lee, EJ, et al. (2011) Consumption of oxidized oil increases oxidative stress in broilers and affects the quality of breast meat. J Agric Food Chem 59, 969974.CrossRefGoogle ScholarPubMed
Morachis-Valdez, G, Dublán-García, O, López-Martínez, LX, et al. (2015) Chronic exposure to pollutants in Madín Reservoir (Mexico) alters oxidative stress status and flesh quality in the common carp Cyprinus carpio. Environ Sci Pollut Res 22, 91599172.CrossRefGoogle ScholarPubMed
Østbye, T-K, Kjær, MA, Rørå, AMB, et al. (2011) High n-3 HUFA levels in the diet of Atlantic salmon affect muscle and mitochondrial membrane lipids and their susceptibility to oxidative stress. Aquacult Nutr 17, 177190.CrossRefGoogle Scholar
Li, Y, Chen, Y, Li, AS, et al. (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol-Cell Physiol 285, C806C812.CrossRefGoogle ScholarPubMed
Magnoni, LJ, Vraskou, Y, Palstra, AP, et al. (2012) AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One 7, e31219.CrossRefGoogle ScholarPubMed
Sánchez-Gurmaches, J, Cruz-Garcia, L, Gutiérrez, J, et al. (2010) Endocrine control of oleic acid and glucose metabolism in rainbow trout (Oncorhynchus mykiss) muscle cells in culture. Am J Physiol-Regul Integr Comp Physiol 299, R562R572.CrossRefGoogle ScholarPubMed
Deng, K, Pan, M, Liu, J, et al. (2018) Chronic stress of high dietary carbohydrate level causes inflammation and influences glucose transport through SOCS3 in Japanese flounder Paralichthys olivaceus. Sci Rep 8, 7415.CrossRefGoogle ScholarPubMed
Liu, J, Pan, M, Huang, D, et al. (2020) Myostatin-1 inhibits cell proliferation by inhibiting the mTOR signal pathway and MRFs, and activating the ubiquitin-proteasomal system in skeletal muscle cells of japanese flounder paralichthys olivaceus. Cells 9, 2376.CrossRefGoogle ScholarPubMed
Halliwell, B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J 37, 99.Google ScholarPubMed
Piconi, L, Quagliaro, L, Assaloni, R, et al. (2006) Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes/Metab Res Rev 22, 198203.CrossRefGoogle ScholarPubMed
Li, X, Liu, H, Wang, H, et al. (2014) Follistatin could promote the proliferation of duck primary myoblasts by activating PI3K/Akt/mTOR signalling. Biosci Rep 34, e00143.CrossRefGoogle ScholarPubMed
Ghodratollah, P, Parvin, P, Mina, Z, et al. (2018) MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-κB pathways and ROS production in HepG2 cells. PLoS One 13, e0196580.Google Scholar
Zhang, Y, Xi, X, Mei, Y, et al. (2019) High-glucose induces retinal pigment epithelium mitochondrial pathways of apoptosis and inhibits mitophagy by regulating ROS/PINK1/Parkin signal pathway. Biomed Pharmacother 111, 13151325.CrossRefGoogle ScholarPubMed
Ramírez, E, Klett-Mingo, M, Ares-Carrasco, S, et al. (2013) Eplerenone attenuated cardiac steatosis, apoptosis and diastolic dysfunction in experimental type-II diabetes. Cardiovasc Diabetol 12, 172.CrossRefGoogle ScholarPubMed
Gonzalez, E & Yamazaki, K (2012) Mitochondrial dynamics in the type 2 diabetic heart. FASEB J 27, 17.Google Scholar
Skiba-Cassy, S, Lansard, M, Panserat, S, et al. (2009) Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. Am J Physiol-Regul Integr Comp Physiol 297, R1421R1429.CrossRefGoogle ScholarPubMed
Shi, X, Jin, A, Sun, J, et al. (2018) The protein-sparing effect of α-lipoic acid in juvenile grass carp, Ctenopharyngodon idellus: effects on lipolysis, fatty acid β-oxidation and protein synthesis. Br J Nutr 120, 977987.CrossRefGoogle ScholarPubMed
Jiang, H, Bian, F, Zhou, H, et al. (2017) Nutrient sensing and metabolic changes after methionine deprivation in primary muscle cells of turbot (Scophthalmus maximus L.). J Nutr Biochem 50, 7482.CrossRefGoogle Scholar
Han, S-L, Wang, J, Li, L-Y, et al. (2020) The regulation of rapamycin on nutrient metabolism in Nile tilapia fed with high-energy diet. Aquacult 520, 734975.CrossRefGoogle Scholar
Aedo, JE, Fuentes-Valenzuela, M, Molina, A, et al. (2019) Quantitative proteomics analysis of membrane glucocorticoid receptor activation in rainbow trout skeletal muscle. Comp Biochem Physiol D Genom Proteom 32, 100627.Google ScholarPubMed
Yogev, O, Williams, VC, Hinits, Y, et al. (2013) eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation. PLoS Biol 11, e1001679.CrossRefGoogle ScholarPubMed
Makino, A, Suarez, J, Gawlowski, T, et al. (2011) Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am J Physiol-Regul Integr Comp Physiol 300, R1296R1302.CrossRefGoogle ScholarPubMed
Brownlee, M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813820.CrossRefGoogle ScholarPubMed
Chinopoulos, C & Adam-Vizi, V (2010) Mitochondria as ATP consumers in cellular pathology. Biochim Biophys Acta (BBA)-Molecular Basis Dis 1802, 221227.CrossRefGoogle ScholarPubMed
Schisano, B, Harte, AL, Lois, K, et al. (2012) GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul Pept 174, 4652.CrossRefGoogle ScholarPubMed
Sebastián, D, Hernández-Alvarez, MI, Segalés, J, et al. (2012) Mitofusin 2 (Mfn2) links mitochondrial, endoplasmic reticulum function with insulin signaling, is essential for normal glucose homeostasis. Proc Natl Acad Sci 109, 55235528.CrossRefGoogle ScholarPubMed
Hüttemann, M, Pecina, P, Rainbolt, M, et al. (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11, 369381.CrossRefGoogle Scholar
Ramzan, R, Vogt, S & Kadenbach, B (2020) Stress-mediated generation of deleterious ROS in healthy individuals-role of cytochrome c oxidase. J Mol Med 98, 651657.CrossRefGoogle ScholarPubMed
Zhang, M, Wang, D, Huang, W, et al. (2013) Apoptosis during postmortem conditioning and its relationship to duck meat quality. Food Chem 138, 96100.CrossRefGoogle ScholarPubMed
Patanè, G, Anello, M, Piro, S, et al. (2002) Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-γ inhibition. Diabetes 51, 27492756.CrossRefGoogle ScholarPubMed
Yu, M, Peng, Z, Liao, Y, et al. (2019) Deoxynivalenol-induced oxidative stress, Nrf2 translocation in maternal liver on gestation day 12.5 d, 18.5 d. Toxicon 161, 1722.CrossRefGoogle Scholar
Richter, EA & Hargreaves, M (2013) Exercise GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93, 9931017.CrossRefGoogle ScholarPubMed
Hardie, DG, Ross, FA & Hawley, SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251262.CrossRefGoogle ScholarPubMed
Summermatter, S, Santos, G, Pérez-Schindler, J, et al. (2013) Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proc Natl Acad Sci 110, 87388743.CrossRefGoogle ScholarPubMed
Furukawa, F, Irachi, S, Koyama, M, et al. (2018) Changes in glycogen concentration and gene expression levels of glycogen-metabolizing enzymes in muscle and liver of developing masu salmon. Comp Biochem Physiol A Mol Integr Physiol 225, 7482.CrossRefGoogle ScholarPubMed
Watabe, S (2001) Myogenic regulatory factors. Fish Physiol 18, 1941.CrossRefGoogle Scholar
Luo, W, Ai, L, Wang, B, et al. (2019) High glucose inhibits myogenesis and induces insulin resistance by down-regulating AKT signaling. Biomed Pharmacother 120, 109498.CrossRefGoogle ScholarPubMed
McFarlane, C, Plummer, E, Thomas, M, et al. (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-κ-independent, FoxO1-dependent mechanism. J Cell Physiol 209, 501514.CrossRefGoogle ScholarPubMed
Ohanna, M, Sobering, AK, Lapointe, T, et al. (2005) Atrophy of S6K1-/- skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7, 286.CrossRefGoogle ScholarPubMed
Ruvinsky, I & Meyuhas, O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31, 342348.CrossRefGoogle ScholarPubMed
Deldicque, L, Theisen, D & Francaux, M (2005) Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 94, 110.CrossRefGoogle ScholarPubMed
Seiliez, I, Taty Taty, GC, Bugeon, J, et al. (2013) Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. General Comparative Endocrinol 186, 915.CrossRefGoogle ScholarPubMed
Wang, J, Li, X, Han, T, et al. (2016) Effects of different dietary carbohydrate levels on growth, feed utilization and body composition of juvenile grouper Epinephelus akaara. Aquacult 459, 143147.CrossRefGoogle Scholar
Liu, D, Deng, K, Sampath, W, et al. (2019) Responses of glucosensing system to glucose in Japanese flounder Paralichthys olivaceus fed diets with different carbohydrate content. Comp Biochem Physiol Part B Biochem Mol Biol 232, 7278.CrossRefGoogle ScholarPubMed
Yang, M, Deng, K, Pan, M, et al. (2019) Glucose and lipid metabolic adaptations during postprandial starvation of Japanese flounder Paralichthys olivaceus previously fed different levels of dietary carbohydrates. Aquacult 501, 416429.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High glucose induces apoptosis, glycogen accumulation and suppresses protein synthesis in muscle cells of olive flounder Paralichthys olivaceus
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High glucose induces apoptosis, glycogen accumulation and suppresses protein synthesis in muscle cells of olive flounder Paralichthys olivaceus
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High glucose induces apoptosis, glycogen accumulation and suppresses protein synthesis in muscle cells of olive flounder Paralichthys olivaceus
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *