Hostname: page-component-59f8fd8595-hk2jd Total loading time: 0 Render date: 2023-03-22T01:05:10.213Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Fat mass assessment using the triceps skinfold thickness enhances the prognostic value of the Global Leadership Initiative on Malnutrition criteria in patients with lung cancer

Published online by Cambridge University Press:  05 July 2021

Liangyu Yin
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, People’s Republic of China
Yang Fan
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Xin Lin
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Ling Zhang
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Na Li
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Jie Liu
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Jing Guo
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Mengyuan Zhang
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Xiumei He
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Lijuan Liu
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Hongmei Zhang
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Muli Shi
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Feifei Chong
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
Xiao Chen
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Chang Wang
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Xu Wang
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Tingting Liang
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Xiangliang Liu
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Li Deng
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Wei Li
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Chunhua Song
Affiliation:
Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
Jiuwei Cui
Affiliation:
Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
Hanping Shi
Affiliation:
Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing100038, People’s Republic of China
Hongxia Xu*
Affiliation:
Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
*
*Corresponding author: Hongxia Xu, email hx_xu2015@163.com

Abstract

The present study evaluated whether fat mass assessment using the triceps skinfold (TSF) thickness provides additional prognostic value to the Global Leadership Initiative on Malnutrition (GLIM) framework in patients with lung cancer (LC). We performed an observational cohort study including 2672 LC patients in China. Comprehensive demographic, disease and nutritional characteristics were collected. Malnutrition was retrospectively defined using the GLIM criteria, and optimal stratification was used to determine the best thresholds for the TSF. The associations of malnutrition and TSF categories with survival were estimated independently and jointly by calculating multivariable-adjusted hazard ratios (HR). Malnutrition was identified in 808 (30·2 %) patients, and the best TSF thresholds were 9·5 mm in men and 12 mm in women. Accordingly, 496 (18·6 %) patients were identified as having a low TSF. Patients with concurrent malnutrition and a low TSF had a 54 % (HR = 1·54, 95 % CI = 1·25, 1·88) greater death hazard compared with well-nourished individuals, which was also greater compared with malnourished patients with a normal TSF (HR = 1·23, 95 % CI = 1·06, 1·43) or malnourished patients without TSF assessment (HR = 1·31, 95 % CI = 1·14, 1·50). These associations were concentrated among those patients with adequate muscle mass (as indicated by the calf circumference). Additional fat mass assessment using the TSF enhances the prognostic value of the GLIM criteria. Using the population-derived thresholds for the TSF may provide significant prognostic value when used in combination with the GLIM criteria to guide strategies to optimise the long-term outcomes in patients with LC.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, W, Zheng, R, Baade, PD, et al. (2016) Cancer statistics in China, 2015. Cancer J Clin 66, 115132.CrossRefGoogle ScholarPubMed
Bray, F, Ferlay, J, Soerjomataram, I, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. C J Clin 68, 394424.CrossRefGoogle ScholarPubMed
Bagcchi, S (2017) Lung cancer survival only increases by a small amount despite recent treatment advances. Lancet Respir Med 5, 169.CrossRefGoogle ScholarPubMed
Yang, J, Zhu, J, Zhang, YH, et al. (2015) Lung cancer in a rural area of China: rapid rise in incidence and poor improvement in survival. Asian Pac J Cancer Prev: APJCP 16, 72957302.CrossRefGoogle Scholar
Bilfinger, TV, Albano, D, Perwaiz, M, et al. (2018) Survival outcomes among lung cancer patients treated using a multidisciplinary team approach. Clin Lung Cancer 19, 346351.CrossRefGoogle ScholarPubMed
Arends, J, Bachmann, P, Baracos, V, et al. (2017) ESPEN guidelines on nutrition in cancer patients. Clin Nutr 36, 1148.CrossRefGoogle ScholarPubMed
Mele, MC, Rinninella, E, Cintoni, M, et al. (2020) Nutritional support in lung cancer patients: the state of the art. Clin Lung Cancer (In the Press).Google ScholarPubMed
Gonzalez-Rodriguez, M, Villar-Taibo, R, Fernandez-Pombo, A, et al. (2020) Early v. conventional nutritional intervention in head and neck cancer patients before radiotherapy: benefits of a fast-track circuit. Eur J Clin Nutr (In the Press).Google Scholar
Xu, LB, Huang, ZX, Zhang, HH, et al. (2020) Impact of preoperative short-term parenteral nutrition support on the clinical outcome of gastric cancer patients: a propensity score matching analysis. JPEN J Parenteral Enteral Nutr (In the Press).Google ScholarPubMed
Bacha, S, Mejdoub El Fehri, S, Habibech, S, et al. (2018) Impact of malnutrition in advanced non-small cell lung cancer. La Tunisie Med 96, 5963.Google ScholarPubMed
Gioulbasanis, I, Baracos, VE, Giannousi, Z, et al. (2011) Baseline nutritional evaluation in metastatic lung cancer patients: mini Nutritional Assessment v. weight loss history. Ann Oncol: Offic J Eur Soc Med Oncol 22, 835841.CrossRefGoogle Scholar
Ross, PJ, Ashley, S, Norton, A, et al. (2004) Do patients with weight loss have a worse outcome when undergoing chemotherapy for lung cancers? Br J Cancer 90, 19051911.CrossRefGoogle ScholarPubMed
Yang, J, Zhang, Q & Wang, X (2018) Role of nutritional support for postoperative recovery of respiratory function in patients with primary lung cancer. Oncol Letter 16, 59785982.Google ScholarPubMed
Polanski, J, Jankowska-Polanska, B, Uchmanowicz, I, et al. (2017) Malnutrition and quality of life in patients with non-small-cell lung cancer. Adv Exp Med Biol 1021, 1526.CrossRefGoogle ScholarPubMed
Go, SI, Jeon, H, Park, SW, et al. (2018) Low pre-treatment nutritional index is significantly related to poor outcomes in small cell lung cancer. Thoracic Cancer 9, 14831491.CrossRefGoogle ScholarPubMed
Fiorelli, A, Vicidomini, G, Mazzella, A, et al. (2014) The influence of body mass index and weight loss on outcome of elderly patients undergoing lung cancer resection. Thorac Cardiovasc Surg 62, 578587.CrossRefGoogle ScholarPubMed
Tobberup, R, Carus, A, Rasmussen, HH, et al. (2020) Feasibility of a multimodal intervention on malnutrition in patients with lung cancer during primary anti-neoplastic treatment. Clin Nutr (In the Press).Google ScholarPubMed
Cederholm, T, Jensen, GL, Correia, M, et al. (2019) GLIM criteria for the diagnosis of malnutrition – a consensus report from the Global Clinical Nutrition Community. Clin Nutr 38, 19.CrossRefGoogle Scholar
Jensen, GL, Cederholm, T, Correia, M, et al. (2019) GLIM criteria for the diagnosis of malnutrition: a consensus report from the Global Clinical Nutrition Community. JPEN J Parenter Enter Nutr 43, 3240.CrossRefGoogle Scholar
Allard, JP, Keller, H, Gramlich, L, et al. (2019) GLIM criteria has fair sensitivity and specificity for diagnosing malnutrition when using SGA as comparator. Clin Nutr 39, 27712777.CrossRefGoogle ScholarPubMed
Skeie, E, Tangvik, RJ, Nymo, LS, et al. (2020) Weight loss and BMI criteria in GLIM’s definition of malnutrition is associated with postoperative complications following abdominal resections – results from a National Quality Registry. Clin Nutr 39, 15931599.CrossRefGoogle ScholarPubMed
Contreras-Bolivar, V, Sanchez-Torralvo, FJ, Ruiz-Vico, M, et al. (2019) GLIM criteria using hand grip strength adequately predict six-month mortality in cancer inpatients. Nutrients 11, 2043.CrossRefGoogle ScholarPubMed
Zhang, X, Tang, M, Zhang, Q, et al. (2020) The GLIM criteria as an effective tool for nutrition assessment and survival prediction in older adult cancer patients. Clin Nutr (In the Press).Google ScholarPubMed
Yin, L, Lin, X, Zhao, Z, et al. (2021) Is hand grip strength a necessary supportive index in the phenotypic criteria of the GLIM-based diagnosis of malnutrition in patients with cancer? Support Care Cancer (Online ahead of print).CrossRefGoogle ScholarPubMed
Yin, L, Lin, X, Liu, J, et al. (2021) Classification tree-based machine learning to visualize and validate a decision tool for identifying malnutrition in cancer patients. JPEN J Parenteral Enteral Nutr (In the Press).CrossRefGoogle ScholarPubMed
Keller, H, de van der Schueren, MAE, Consortium, G, et al. (2020 ) Global leadership initiative on malnutrition (GLIM): guidance on validation of the operational criteria for the diagnosis of protein-energy malnutrition in adults. JPEN J Parenteral Enteral Nutr (In the Press).CrossRefGoogle Scholar
Ottery, FD (1994) Rethinking nutritional support of the cancer patient: the new field of nutritional oncology. Semin Oncol 21, 770778.Google ScholarPubMed
Caan, BJ, Cespedes Feliciano, EM, Prado, CM, et al. (2018) Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol 4, 798804.CrossRefGoogle ScholarPubMed
Von Geldern, P, Salas, C, Alvayay, P, et al. (2020) Nutritional assessment by subjective methods v. computed tomography to predict survival in oncology patients. Nutrition 84, 111006.CrossRefGoogle Scholar
Willemsen, ACH, Degens, J, Baijens, LWJ, et al. (2020) Early loss of fat mass during chemoradiotherapy predicts overall survival in locally advanced squamous cell carcinoma of the lung, but not in locally advanced squamous cell carcinoma of the head and neck. Front Nutr 7, 600612.CrossRefGoogle ScholarPubMed
Popinat, G, Cousse, S, Goldfarb, L, et al. (2019) Sub-cutaneous Fat Mass measured on multislice computed tomography of pretreatment PET/CT is a prognostic factor of stage IV non-small cell lung cancer treated by nivolumab. Oncoimmunology 8, e1580128.CrossRefGoogle ScholarPubMed
Yin, L, Lin, X, Li, N, et al. (2020) Evaluation of the Global Leadership Initiative on malnutrition criteria using different muscle mass indices for diagnosing malnutrition and predicting survival in lung cancer patients. JPEN J Parenteral Enteral Nutr (In the Press).Google ScholarPubMed
Xu, HX, Song, CH, Wang, C, et al. (2020) Investigation on nutrition status and clinical outcome of patients with common cancers in Chinese patients: a multicenter prospective study protocol. Int J Clin Trials 7, 94102.CrossRefGoogle Scholar
Kondrup, J, Allison, SP, Elia, M, et al. (2003) ESPEN guidelines for nutrition screening 2002. Clin Nutr 22, 415421.CrossRefGoogle ScholarPubMed
Murri, R, Scoppettuolo, G, Damiano, F, et al. (1996) Karnofsky performance status and assessment of Global Health Status. J Acquir Immune Defic Syndr Hum Retrovirol 13, 294295.CrossRefGoogle ScholarPubMed
Wan, C, Meng, Q, Yang, Z, et al. (2008) Validation of the simplified Chinese version of EORTC QLQ-C30 from the measurements of five types of inpatients with cancer. Ann Oncol: Offic J Eur Soc Med Oncol 19, 20532060.CrossRefGoogle ScholarPubMed
Maeda, K, Ishida, Y, Nonogaki, T, et al. (2020) Reference body mass index values and the prevalence of malnutrition according to the Global Leadership Initiative on Malnutrition criteria. Clin Nutr 39, 180184.CrossRefGoogle Scholar
Maeda, K, Koga, T, Nasu, T, et al. (2017) Predictive accuracy of calf circumference measurements to detect decreased skeletal muscle mass and European society for clinical nutrition and metabolism-defined malnutrition in hospitalized older patients. Ann Nutr Metab 71, 1015.CrossRefGoogle ScholarPubMed
Martin, L, Birdsell, L, Macdonald, N, et al. (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol: Offic J Am Soc Clin Oncol 31, 15391547.CrossRefGoogle ScholarPubMed
Prado, CM, Lieffers, JR, McCargar, LJ, et al. (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 9, 629635.CrossRefGoogle ScholarPubMed
Chen, LK, Woo, J, Assantachai, P, et al. (2020) Asian working group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Directors Assoc 21, 300307 e2.CrossRefGoogle Scholar
Martinez-Tapia, C, Diot, T, Oubaya, N, et al. (2020) The obesity paradox for mid- and long-term mortality in older cancer patients: a prospective multicenter cohort study. Am J Clin Nutr (In the Press).Google ScholarPubMed
Paixao, EMS, Gonzalez, MC, Nakano, EY, et al. (2020) Weight loss, phase angle, and survival in cancer patients undergoing radiotherapy: a prospective study with 10-year follow-up. Eur J Clin Nutr (In the Press).Google ScholarPubMed
Lee, DH, Keum, N, Hu, FB, et al. (2018) Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ 362, k2575.CrossRefGoogle ScholarPubMed
Cruz-Jentoft, AJ, Baeyens, JP, Bauer, JM, et al. (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people. Age Ageing 39, 412423.CrossRefGoogle ScholarPubMed
Sousa, IM, Bielemann, RM, Gonzalez, MC, et al. (2020) Low calf circumference is an independent predictor of mortality in cancer patients: a prospective cohort study. Nutrition 79, 110816.CrossRefGoogle ScholarPubMed
Lam, VK, Bentzen, SM, Mohindra, P, et al. (2017) Obesity is associated with long-term improved survival in definitively treated locally advanced non-small cell lung cancer (NSCLC). Lung Cancer 104, 5257.CrossRefGoogle Scholar
Sheean, P, Gonzalez, MC, Prado, CM, et al. (2020) American society for parenteral and enteral nutrition clinical guidelines: the validity of body composition assessment in clinical populations. JPEN J Parenter Enter Nutr 44, 1243.CrossRefGoogle ScholarPubMed
Ueno, A, Yamaguchi, K, Sudo, M, et al. (2020) Sarcopenia as a risk factor of severe laboratory adverse events in breast cancer patients receiving perioperative epirubicin plus cyclophosphamide therapy. Support Care Cancer 28, 42494254.CrossRefGoogle ScholarPubMed
Hurt, RT, Ebbert, JO, Croghan, I, et al. (2020) The comparison of segmental multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry for estimating fat free mass and percentage body fat in an ambulatory population. JPEN J Parenteral Enteral Nutr (In the Press).Google Scholar
Supplementary material: File

Yin et al. supplementary material

Table S1

Download Yin et al. supplementary material(File)
File 18 KB