Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-7rmfg Total loading time: 0.603 Render date: 2022-07-07T12:25:53.364Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Energy expenditure and nutrient intake after spinal cord injury: a comprehensive review and practical recommendations

Published online by Cambridge University Press:  23 September 2021

Gary J. Farkas*
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
Alicia Sneij
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
David W. McMillan
Affiliation:
Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
Eduard Tiozzo
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
Mark S. Nash
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA South Florida Spinal Cord Injury Model System, University of Miami Miller School of Medicine, Miami, FL, USA
David R. Gater Jr.
Affiliation:
Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA South Florida Spinal Cord Injury Model System, University of Miami Miller School of Medicine, Miami, FL, USA
*
*Corresponding author: Gary J. Farkas, email gjf50@med.miami.edu

Abstract

Many persons with spinal cord injury (SCI) have one or more preventable chronic diseases related to excessive energetic intake and poor eating patterns. Appropriate nutrient consumption relative to need becomes a concern despite authoritative dietary recommendations from around the world. These recommendations were developed for the non-disabled population and do not account for the injury-induced changes in body composition, hypometabolic rate, hormonal dysregulation and nutrition status after SCI. Because evidence-based dietary reference intake values for SCI do not exist, ensuring appropriate consumption of macronutrient and micronutrients for their energy requirements becomes a challenge. In this compressive review, we briefly evaluate aspects of energy balance and appetite control relative to SCI. We report on the evidence regarding energy expenditure, nutrient intake and their relationship after SCI. We compare these data with several established nutritional guidelines from American Heart Association, Australian Dietary Guidelines, Dietary Guidelines for Americans, Institute of Medicine Dietary Reference Intake, Public Health England Government Dietary Recommendations, WHO Healthy Diet and the Paralyzed Veterans of America (PVA) Clinical Practice Guidelines. We also provide practical assessment and nutritional recommendations to facilitate a healthy dietary pattern after SCI. Because of a lack of strong SCI research, there are currently limited dietary recommendations outside of the PVA guidelines that capture the unique nutrient needs after SCI. Future multicentre clinical trials are needed to develop comprehensive, evidence-based dietary reference values specific for persons with SCI across the care continuum that rely on accurate, individual assessment of energy need.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cadotte, DW & Fehlings, MG (2011) Spinal cord injury: a systematic review of current treatment options. Clin Orthop Relat Res 469, 732741.CrossRefGoogle ScholarPubMed
Zeilig, G, Dolev, M, Weingarden, H, et al. (2000) Long-term morbidity and mortality after spinal cord injury: 50 years of follow-up. Spinal Cord 38, 563566.CrossRefGoogle ScholarPubMed
Gater, DR (2020) Neurogenic bowel and bladder evaluation strategies in spinal cord injury: new directions. J Spinal Cord Med 43, 139140.CrossRefGoogle ScholarPubMed
Ko, HY (2018) Revisit spinal shock: pattern of Reflex evolution during spinal shock. Korean J Neurotrauma 14, 4754.CrossRefGoogle ScholarPubMed
Gater, DR (2007) Obesity after spinal cord injury. Phys Med Rehabil Clin N Am 18, 333351.CrossRefGoogle ScholarPubMed
Wing, PC (2008) Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med 31, 403479.CrossRefGoogle Scholar
Farkas, GJ & Gater, DR (2018) Neurogenic obesity and systemic inflammation following spinal cord injury: a review. J Spinal Cord Med 41, 378387.CrossRefGoogle ScholarPubMed
Nash, MS, Groah, SL, Gater, DR, et al. (2019) Identification and management of cardiometabolic risk after spinal cord injury. J Spinal Cord Med 42, 643677.CrossRefGoogle ScholarPubMed
Farkas, GJ, Gorgey, AS, Dolbow, DR, et al. (2019) Caloric intake relative to total daily energy expenditure using a spinal cord injury-specific correction factor: an analysis by level of injury. Am J Phys Med Rehabil 98, 947952.CrossRefGoogle ScholarPubMed
Nash, MS, Groah, SL, Gater, DR, et al. (2018) Identification and management of cardiometabolic risk after spinal cord injury: clinical practice guideline for health care providers. Top Spinal Cord Inj Rehabil 24, 379423.CrossRefGoogle ScholarPubMed
Gater, DR, Farkas, GJ, Berg, AS, et al. (2018) Prevalence of metabolic syndrome in veterans with spinal cord injury. J Spinal Cord Med 42, 8693.CrossRefGoogle ScholarPubMed
U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans, 8th ed. Washington, DC: U.S. Department of Health and Human Services and U.S. Department of Agriculture.Google Scholar
Public Health England (2016) Government Dietary Recommendations. London: Public Health England.Google Scholar
National Health and Medical Research Council (2013) Australian Dietary Guidelines. Canberra, Australia: National Health and Medical Research Council.Google Scholar
Institute of Medicine of the National Academies (2006) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: Institute of Medicine of the National Academies.Google Scholar
World Health Organization Consultation (2000) Obesity: Preventing and Managing the Global Epidemic. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. Geneva: World Health Organization.Google Scholar
Jensen, MD, Ryan, DH, Apovian, CM, et al. (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults; a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol 63, 29853025.CrossRefGoogle Scholar
Eckel, RH, Jakicic, JM, Ard, JD, et al. (2015) 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation 131, E326E326.Google Scholar
Farkas, GJ, Pitot, MA, Berg, AS, et al. (2019) Nutritional status in chronic spinal cord injury: a systematic review and meta-analysis. Spinal Cord 57, 317.CrossRefGoogle ScholarPubMed
Gater, DR, Farkas, GJ & Tiozzo, E (2021) Pathophysiology of neurogenic obesity after spinal cord injury. Top Spinal Cord Inj Rehabil 27, 110.CrossRefGoogle ScholarPubMed
Weaver, FM, Collins, EG, Kurichi, J, et al. (2007) Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders: a retrospective review. Am J Phys Med Rehabil 86, 2229.CrossRefGoogle ScholarPubMed
Hales, CM, Carroll, MD, Fryar, CD, et al. (2020) Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS data brief 360, 18.Google Scholar
Zhu, C, Galea, M, Livote, E, et al. (2013) A retrospective chart review of heart rate and blood pressure abnormalities in veterans with spinal cord injury. J Spinal Cord Med 36, 463475.CrossRefGoogle ScholarPubMed
Wahman, K, Nash, MS, Lewis, JE, et al. (2010) Increased cardiovascular disease risk in Swedish persons with paraplegia: the Stockholm spinal cord injury study. J Rehabil Med 42, 489492.CrossRefGoogle ScholarPubMed
Rajan, S, McNeely, MJ, Hammond, M, et al. (2010) Association between obesity and diabetes mellitus in veterans with spinal cord injuries and disorders. Am J Phys Med Rehabil 89, 353361.CrossRefGoogle ScholarPubMed
Liang, H, Chen, D, Wang, Y, et al. (2007) Different risk factor patterns for metabolic syndrome in men with spinal cord injury compared with able-bodied men despite similar prevalence rates. Arch Phys Med Rehabil 88, 11981204.CrossRefGoogle ScholarPubMed
Chen, YY, Cao, Y, Allen, V, et al. (2011) Weight Matters: physical and psychosocial well being of persons with spinal cord injury in relation to body mass index. Arch Phys Med Rehabil 92, 391398.CrossRefGoogle ScholarPubMed
Gupta, N, White, KT & Sandford, PR (2006) Body mass index in spinal cord injury – a retrospective study. Spinal Cord 44, 9294.CrossRefGoogle ScholarPubMed
Gater, DR, Farkas, GJ, Dolbow, DR, et al. (2021) Body composition and metabolic assessment after aotor complete spinal cord injury: development of a clinically relevant equation to estimate body fat. Top Spinal Cord Inj Rehabil 27, 1122.CrossRefGoogle ScholarPubMed
Maher, JL, McMillan, DW & Nash, MS (2017) Exercise and health-related risks of physical deconditioning after spinal cord injury. Top Spinal Cord Inj Rehabil 23, 175187.CrossRefGoogle ScholarPubMed
Dearwater, SR, Laporte, RE, Robertson, RJ, et al. (1986) Activity in the spinal cord-injured patient – an epidemiologic analysis of metabolic parameters. Med Sci Sports Exerc 18, 541544.CrossRefGoogle ScholarPubMed
Noreau, L, Shephard, RJ, Simard, C, et al. (1993) Relationship of impairment and functional ability to habitual activity and fitness following spinal cord injury. Int J Rehabil Res 16, 265275.CrossRefGoogle ScholarPubMed
Stjernberg, L, Blumberg, H & Wallin, BG (1986) Sympathetic activity in man after spinal-cord injury – outflow to muscle below the lesion. Brain 109, 695715.CrossRefGoogle ScholarPubMed
Monroe, MB, Tataranni, PA, Pratley, R, et al. (1998) Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am J Clin Nutr 68, 12231227.CrossRefGoogle ScholarPubMed
Bauman, WA, La Fountaine, MF & Spungen, AM (2014) Age-related prevalence of low testosterone in men with spinal cord injury. J Spinal Cord Med 37, 3239.CrossRefGoogle ScholarPubMed
Barbonetti, A, Vassallo, MRC, Pacca, F, et al. (2014) Correlates of low testosterone in men with chronic spinal cord injury. Andrology 2, 721728.CrossRefGoogle ScholarPubMed
Safarinejad, MR (2001) Level of injury and hormone profiles in spinal cord-injured men. Urology 58, 671676.CrossRefGoogle ScholarPubMed
Durga, A, Sepahpanah, F, Regozzi, M, et al. (2011) Prevalence of testosterone deficiency after spinal cord injury. PMR 3, 929932.CrossRefGoogle ScholarPubMed
Schopp, LH, Clark, M, Mazurek, MO, et al. (2006) Testosterone levels among men with spinal cord injury admitted to inpatient rehabilitation. Am J Phys Med Rehabil 85, 678684.CrossRefGoogle ScholarPubMed
Clark, MJ, Schopp, LH, Mazurek, MO, et al. (2008) Testosterone levels among men with spinal cord injury: relationship between time since injury and laboratory values. Am J Phys Med Rehabil 87, 758767.CrossRefGoogle ScholarPubMed
Holmes, GM (2012) Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 3, 112.CrossRefGoogle ScholarPubMed
Modlesky, CM, Bickel, CS, Slade, JM, et al. (2004) Assessment of skeletal muscle mass in men with spinal cord injury using dual-energy X-ray absorptiometry and magnetic resonance imaging. J Appl Physiol 96, 561565.CrossRefGoogle ScholarPubMed
Jones, LM, Goulding, A & Gerrard, DF (1998) DEXA: a practical and accurate tool to demonstrate total and regional bone loss, lean tissue loss and fat mass gain in paraplegia. Spinal Cord 36, 637640.CrossRefGoogle ScholarPubMed
Nuhlicek, DNR, Spurr, GB, Barboriak, JJ, et al. (1988) Body-composition of patients with spinal-cord injury. Eur J Clin Nutr 42, 765773.Google ScholarPubMed
Castro, MJ, Apple, DF, Hillegass, EA, et al. (1999) Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. J Appl Physiol 80, 373378.Google ScholarPubMed
Grimby, G, Broberg, C, Krotkiewska, I, et al. (1976) Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med 8, 3742.Google ScholarPubMed
Gorgey, AS & Dudley, GA (2007) Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 45, 304309.CrossRefGoogle ScholarPubMed
Minaire, P, Edouard, C, Arlot, M, et al. (1984) Marrow changes in paraplegic patients. Calcif Tissue Int 36, 338340.CrossRefGoogle ScholarPubMed
Edwards, WB, Schnitzer, TJ & Troy, KL (2014) Reduction in proximal femoral strength in patients with acute spinal cord injury. J Bone Miner Res 29, 20742079.CrossRefGoogle ScholarPubMed
Bieringsorensen, F, Bohr, HH & Schaadt, OP (1990) Longitudinal-study of bone-mineral content in the lumbar spine, the forearm and the lower-extremities after spinal-cord injury. Eur J Clin Investig 20, 330335.CrossRefGoogle Scholar
Goenka, S, Sethi, S, Pandey, N, et al. (2018) Effect of early treatment with zoledronic acid on prevention of bone loss in patients with acute spinal cord injury: a randomized controlled trial. Spinal Cord 56, 12071211.CrossRefGoogle ScholarPubMed
Bauman, WA, Cirnigliaro, CM, La Fountaine, MF, et al. (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33, 410421.CrossRefGoogle Scholar
Qin, W, Bauman, WA & Cardozo, C (2010) Bone and muscle loss after spinal cord injury: organ interactions. Ann NY Acad Sci 1211, 6684.CrossRefGoogle ScholarPubMed
Groah, SL, Nash, MS, Ward, EA, et al. (2011) Cardiometabolic risk in community-dwelling persons with chronic spinal cord injury. J Cardiopulm Rehabil Prev 31, 7380.CrossRefGoogle ScholarPubMed
Balistreri, CR, Caruso, C, Candore, G, et al. (2010) The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm 2010, e802078.CrossRefGoogle ScholarPubMed
Ikeoka, D, Mader, JK & Pieber, TR (2010) Adipose tissue, inflammation and cardiovascular disease. Rev Assoc Med Bras 56, 116121.CrossRefGoogle ScholarPubMed
Ouchi, N, Parker, JL, Lugus, JJ, et al. (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11, 8597.CrossRefGoogle ScholarPubMed
da Silva Alves, E, de Aquino Lemos, V, Ruiz da Silva, F, et al. (2013) Low-grade inflammation and spinal cord injury: exercise as therapy? Mediator Inflamm 2013, 971841.CrossRefGoogle ScholarPubMed
Farkas, GJ, Gorgey, AS, Dolbow, DR, et al. (2017) The influence of level of spinal cord injury on adipose tissue and its relationship to inflammatory adipokines and cardiometabolic profiles. J Spinal Cord Med 41, 121.Google ScholarPubMed
Farkas, GJ, Gorgey, AS, Dolbow, DR, et al. (2018) Sex dimorphism in the distribution of adipose tissue and its influence on proinflammatory adipokines and cardiometabolic profiles in motor complete spinal cord injury. J Spinal Cord Med 42, 115.Google ScholarPubMed
Wang, T-D, Wang, Y-H, Huang, T-S, et al. (2007) Circulating levels of markers of inflammation and endothelial activation are increased in men with chronic spinal cord injury. J Formosan Med Assoc 106, 919928.CrossRefGoogle Scholar
Maruyama, Y, Mizuguchi, M, Yaginuma, T, et al. (2008) Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord 46, 494499.CrossRefGoogle ScholarPubMed
Manns, PJ, McCubbin, JA & Williams, DP (2005) Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil 86, 11761181.CrossRefGoogle ScholarPubMed
Morse, LR, Stolzmann, K, Nguyen, HP, et al. (2008) Association between mobility mode and c-reactive protein levels in men with chronic spinal cord injury. Arch Phys Med Rehabil 89, 726731.CrossRefGoogle ScholarPubMed
Cirnigliaro, CM, LaFountaine, MF, Dengel, DR, et al. (2015) Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity 23, 18111817.CrossRefGoogle ScholarPubMed
Nash, MS, Tractenberg, RE, Mendez, AJ, et al. (2016) Cardiometabolic syndrome in people with spinal cord injury/disease: guideline-derived and nonguideline risk components in a pooled sample. Arch Phys Med Rehabil 97, 16961705.CrossRefGoogle Scholar
Laughton, GE, Buchholz, AC, Martin Ginis, KA, et al. (2009) Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord 47, 757762.CrossRefGoogle ScholarPubMed
Alberti, K, Zimmet, P & Shaw, J (2006) Metabolic syndrome – a new world-wide definition. A consensus statement from the international diabetes federation. Diabetic Med 23, 469480.CrossRefGoogle ScholarPubMed
Timper, K & Brüning, JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10, 679689.CrossRefGoogle ScholarPubMed
Crespo, C, Cachero, A, Jiménez, L, et al. (2014) Peptides and food intake. Front Endocrinol 5, 58.Google Scholar
Miller, GD (2019) Appetite regulation: hormones, peptides, and neurotransmitters and their role in obesity. Am J Lifestyle Med 13, 586601.CrossRefGoogle ScholarPubMed
Elmquist, KWW & Joel, K (2012) From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15, 13501355.Google Scholar
Naznin, F, Toshinai, K, Waise, TM, et al. (2015) Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation. J Endocrinol 226, 8192.CrossRefGoogle ScholarPubMed
Waise, TMZ, Toshinai, K, Naznin, F, et al. (2015) One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem Biophys Res Commun 464, 11571162.CrossRefGoogle ScholarPubMed
Thaler, JP, C-X, Yi, Schur, EA, et al. (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122, 153162.CrossRefGoogle ScholarPubMed
Vinik, AI, Maser, RE, Mitchell, BD, et al. (2003) Diabetic autonomic neuropathy. Diabetes Care 26, 15531579.CrossRefGoogle ScholarPubMed
Besecker, EM, Blanke, EN, Deiter, GM, et al. (2020) Gastric vagal afferent neuropathy following experimental spinal cord injury. Exp Neurol 323, 113092.CrossRefGoogle ScholarPubMed
Farkas, GJ, Pitot, MA & Gater, DR (2019) A systematic review of the accuracy of estimated and measured resting metabolic rate in chronic spinal cord injury. Int J Sport Nutr Exerc Metab 29, 548558.CrossRefGoogle ScholarPubMed
Buchholz, AC, McGillivray, CF & Pencharz, PB (2003) Differences in resting metabolic rate between paraplegic and able-bodied subjects are explained by differences in body composition. Am J Clin Nutr 77, 371378.CrossRefGoogle ScholarPubMed
Collins, EG, Gater, D, Kiratli, BJ, et al. (2010) Energy cost of physical activities in persons with spinal cord injury. Med Sci Sports Exerc 42, 691700.CrossRefGoogle ScholarPubMed
Aksnes, AK, Brundin, T, Hjeltnes, N, et al. (1993) Meal-induced rise in resting energy-expenditure in patients with complete cervical spinal-cord lesions. Paraplegia 31, 462472.Google ScholarPubMed
Asahara, R & Yamasaki, M (2016) The thermic response to food intake in persons with thoracic spinal cord injury. J Phys Ther Sci 28, 10801085.CrossRefGoogle ScholarPubMed
Melanson, EL (2017) The effect of exercise on non-exercise physical activity and sedentary behavior in adults. Obes Rev 18, 4049.CrossRefGoogle ScholarPubMed
Gorgey, AS, Caudill, C, Sistrun, S, et al. (2015) Frequency of dietary recalls, nutritional assessment, and body composition assessment in men with chronic spinal cord injury. Arch Phys Med Rehabil 96, 16461653.CrossRefGoogle ScholarPubMed
Buchholz, AC & Pencharz, PB (2004) Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care 7, 635639.CrossRefGoogle ScholarPubMed
Gorgey, AS, Khalil, RE, Gill, R, et al. (2019) Low-dose testosterone and evoked resistance exercise after spinal cord injury on cardio-metabolic risk factors: an open-label randomized clinical trial. J Neurotrauma 36, 26312645.CrossRefGoogle ScholarPubMed
Bauman, WA, Spungen, AM, Wang, J, et al. (2004) The relationship between energy expenditure and lean tissue in monozygotic twins discordant for spinal cord injury. J Rehabil Res Dev 41, 18.CrossRefGoogle ScholarPubMed
Broad, EM, Newsome, LJ, Drew, DA, et al. (2020) Measured and predicted resting energy expenditure in wheelchair rugby athletes. J Spinal Cord Med 43, 388397.CrossRefGoogle ScholarPubMed
Cox, SA, Weiss, SM, Posuniak, EA, et al. (1985) Energy expenditure after spinal cord injury: an evaluation of stable rehabilitating patients. J Trauma 25, 419423.CrossRefGoogle ScholarPubMed
Sedlock, DA & Laventure, SJ (1990) Body-composition and resting energy-expenditure in long-Term spinal-cord injury. Paraplegia 28, 448454.Google ScholarPubMed
Alexander, LR, Spungen, AM, Liu, MH, et al. (1995) Resting metabolic-rate in subjects with paraplegia – the effect of pressure sores. Arch Phys Med Rehabil 76, 819822.CrossRefGoogle ScholarPubMed
Liu, MH, Spungen, AM, Fink, L, et al. (1996) Increased energy needs in patients with quadriplegia and pressure ulcers. Adv Wound Care 9, 4145.Google ScholarPubMed
Barco, KT, Smith, RA, Peerless, JR, et al. (2002) Energy expenditure assessment and validation after acute spinal cord injury. Nutr Clin Pract 17, 309313.CrossRefGoogle ScholarPubMed
Desneves, KJ, Panisset, MG, Rafferty, J, et al. (2019) Comparison of estimated energy requirements using predictive equations with total energy expenditure measured by the doubly labelled water method in acute spinal cord injury. Spinal Cord 57, 562570.CrossRefGoogle ScholarPubMed
Gorgey, AS, Poarch, H, Harnish, C, et al. (2011) Acute effects of locomotor training on neuromuscular and metabolic profile after incomplete spinal cord injury. NeuroRehabilitation 29, 7983.CrossRefGoogle ScholarPubMed
Holmlund, T, Ekblom-Bak, E, Franzen, E, et al. (2018) Energy expenditure after spinal cord injury in people with motor-complete tetraplegia or motor-complete paraplegia. Spinal Cord 56, 274283.CrossRefGoogle ScholarPubMed
Rowan, C & Kazemi, A (2020) An observational study of feeding practice in ventilated patients with spinal cord injury. Clin Nutr Espen 37, 107113.CrossRefGoogle ScholarPubMed
Shea, JR, Shay, BL, Leiter, J, et al. (2018) Energy expenditure as a function of activity level after spinal cord injury: the need for tetraplegia-specific energy balance guidelines. Front Physiol 9, 1286.CrossRefGoogle ScholarPubMed
Tanhoffer, RA, Tanhoffer, AIP, Raymond, J, et al. (2012) Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury. J Spinal Cord Med 35, 3545.CrossRefGoogle ScholarPubMed
Tanhoffer, RA, Tanhoffer, AIP, Raymond, J, et al. (2015) Energy expenditure in individuals with spinal cord injury quantified by doubly labeled water and a multi-sensor armband. J Physical Activity Health 12, 163170.CrossRefGoogle Scholar
Wouda, MF, Lundgaard, E, Becker, F, et al. (2018) Effects of moderate- and high-intensity aerobic training program in ambulatory subjects with incomplete spinal cord injury-a randomized controlled trial. Spinal Cord 56, 955963.CrossRefGoogle ScholarPubMed
Wouda, MF, Lundgaard, E, Becker, F, et al. (2020) Changes in cardiorespiratory fitness and activity levels over the first year after discharge in ambulatory persons with recent incomplete spinal cord injury. Spinal Cord 59, 354360.CrossRefGoogle ScholarPubMed
Yilmaz, B, Yasar, E, Goktepe, S, et al. (2007) Basal metabolic rate and autonomic nervous system dysfunction in men with spinal cord injury. Obesity 15, 26832687.CrossRefGoogle ScholarPubMed
Bauman, WA, Cirnigliaro, CM, La Fountaine, MF, et al. (2011) A small-scale clinical trial to determine the safety and efficacy of testosterone replacement therapy in hypogonadal men with spinal cord injury. Horm Metab Res 43, 574579.Google ScholarPubMed
Chun, SM, Kim, HR & Shin, HI (2017) Estimating the Basal metabolic rate from fat free mass in individuals with motor complete spinal cord injury. Spinal Cord 55, 844847.CrossRefGoogle ScholarPubMed
Gorgey, AS, Chiodo, AE, Zemper, ED, et al. (2010) Relationship of spasticity to soft tissue body composition and the metabolic profile in persons with chronic motor complete spinal cord injury. J Spinal Cord Med 33, 615.CrossRefGoogle ScholarPubMed
Gorgey, AS & Gater, DR (2011) Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Appl Physiol Nutr Metab 36, 107114.CrossRefGoogle ScholarPubMed
Gorgey, AS, Mather, KJ, Cupp, HR, et al. (2012) Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc 44, 165174.CrossRefGoogle ScholarPubMed
Gorgey, AS, Martin, H, Metz, A, et al. (2016) Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. J Spinal Cord Med 39, 699712.CrossRefGoogle ScholarPubMed
Gorgey, AS, Farkas, GJ, Dolbow, DR, et al. (2017) Gender dimorphism in central adiposity may explain metabolic dysfunction after spinal cord injury. PMR 10, 338348.CrossRefGoogle ScholarPubMed
Hayes, M, Chustek, M, Wang, Z, et al. (2002) DXA: potential for creating a metabolic map of organ-tissue resting energy expenditure components. Obes Res 10, 969977.CrossRefGoogle ScholarPubMed
Lee, BY, Agarwal, N, Corcoran, L, et al. (1985) Assessment of nutritional and metabolic status of paraplegics. J Rehabil Res Dev 22, 1117.CrossRefGoogle ScholarPubMed
Spungen, AM, Bauman, WA, Wang, J, et al. (1993) The relationship between total body potassium and resting energy expenditure in individuals with paraplegia. Arch Phys Med Rehabil 74, 965968.Google ScholarPubMed
Yilmaz, B, Yasar, E, Goktepe, AS, et al. (2007) The relationship between basal metabolic rate and femur bone mineral density in men with traumatic spinal cord injury. Arch Phys Med Rehabil 88, 758761.CrossRefGoogle ScholarPubMed
Nightingale, TE, Williams, S, Thompson, D, et al. (2017) Energy balance components in persons with paraplegia: daily variation and appropriate measurement duration. Int J Behav Nutr Phys Act 14, 132.CrossRefGoogle ScholarPubMed
Nightingale, TE & Gorgey, AS (2018) Predicting basal metabolic rate in men with motor complete spinal cord injury. Med Sci Sports Exerc 50, 13051312.CrossRefGoogle ScholarPubMed
Perret, C & Stoffel-Kurt, N (2011) Comparison of nutritional intake between individuals with acute and chronic spinal cord injury. J Spinal Cord Med 34, 569575.CrossRefGoogle ScholarPubMed
Pe, lly, FE, Broad, EM, Stuart, N, et al. (2017) Resting energy expenditure in male athletes with a spinal cord injury. J Spinal Cord Med 41, 18.Google Scholar
Kearns, PJ, Thompson, JD, Werner, PC, et al. (1992) Nutritional and metabolic response to acute spinal-cord injury. J Parenter Enter Nutr 16, 1115.CrossRefGoogle ScholarPubMed
Aquilani, R, Boschi, F, Contardi, A, et al. (2001) Energy expenditure and nutritional adequacy of rehabilitation paraplegics with asymptomatic bacteriuria and pressure sores. Spinal Cord 39, 437441.CrossRefGoogle ScholarPubMed
Buchholz, AC, McGillivray, CF & Pencharz, PB (2003) Physical activity levels are low in free-living adults with chronic paraplegia. Obes Res 11, 563570.CrossRefGoogle ScholarPubMed
McMurray, RG, Soares, J, Caspersen, CJ, et al. (2014) Examining variations of resting metabolic rate of adults: a public health perspective. Med Sci Sports Exerc 46, 13521358.CrossRefGoogle ScholarPubMed
Compher, C, Frankenfield, D, Keim, N, et al. (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 106, 881903.CrossRefGoogle ScholarPubMed
Henry, CJ (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr 8, 11331152.CrossRefGoogle ScholarPubMed
Blundell, JE, Caudwell, P, Gibbons, C, et al. (2012) Body composition and appetite: fat-free mass (but not fat mass or BMI) is positively associated with self-determined meal size and daily energy intake in humans. Br J Nutr 107, 445449.CrossRefGoogle ScholarPubMed
Blundell, JE, Finlayson, G, Gibbons, C, et al. (2015) The biology of appetite control: do resting metabolic rate and fat-free mass drive energy intake? Physiol Behav 152, 473478.CrossRefGoogle ScholarPubMed
Caudwell, P, Finlayson, G, Gibbons, C, et al. (2013) Resting metabolic rate is associated with hunger, self-determined meal size, and daily energy intake and may represent a marker for appetite. Am J Clin Nutr 97, 714.CrossRefGoogle ScholarPubMed
Hopkins, M, Finlayson, G, Duarte, C, et al. (2016) Modelling the associations between fat-free mass, resting metabolic rate and energy intake in the context of total energy balance. Int J Obes 40, 312318.CrossRefGoogle ScholarPubMed
Rodriguez, DJ, Benzel, EC & Clevenger, FW (1997) The metabolic response to spinal cord injury. Spinal Cord 35, 599604.CrossRefGoogle ScholarPubMed
Mollinger, LA, Spurr, GB, el Ghatit, AZ, et al. (1985) Daily energy expenditure and basal metabolic rates of patients with spinal cord injury. Arch Phys Med Rehabil 66, 420426.Google ScholarPubMed
Schutz, Y (2018) Respiration chamber calorimetry and doubly labeled water: two complementary aspects of energy expenditure? Eur J Clin Nutr 72, 13101313.CrossRefGoogle ScholarPubMed
Westerterp, KR (2017) Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol 117, 12771285.CrossRefGoogle ScholarPubMed
Weissman, C, Sardar, A & Kemper, M (1994) An in vitro evaluation of an instrument designed to measure oxygen consumption and carbon dioxide production during mechanical ventilation. Crit Care Med 22, 1995–1200.CrossRefGoogle Scholar
Wong, S, Derry, F, Jamous, A, et al. (2012) The prevalence of malnutrition in spinal cord injuries patients: a UK multicentre study. Br J Nutr 108, 918923.CrossRefGoogle ScholarPubMed
Groah, SL, Nash, MS, Ljungberg, IH, et al. (2009) Nutrient intake and body habitus after spinal cord injury: an analysis by sex and level of injury. J Spinal Cord Med 32, 2533.CrossRefGoogle ScholarPubMed
Iyer, P, Beck, E & Walton, K (2020) Exploring nutrition knowledge and dietary intake of adults with spinal cord injury in specialist rehabilitation. Spinal Cord 58, 19.Google ScholarPubMed
Kaufman, HH, Rowlands, BJ, Stein, DK, et al. (1985) General metabolism in patients with acute paraplegia and quadriplegia. Neurosurgery 16, 309313.CrossRefGoogle ScholarPubMed
Laven, GT, Huang, CT, DeVivo, MJ, et al. (1989) Nutritional status during the acute stage of spinal cord injury. Arch Phys Med Rehabil 70, 277282.Google ScholarPubMed
Felleiter, PKJ, Haeberli, Y, Schmid, W, et al. (2017) Post-traumatic changes in energy expenditure and body composition in patients with acute spinal cord injury. J Rehabil Med 49, 579584.CrossRefGoogle ScholarPubMed
Academy of Nutrition and Dietetics (2009) Spinal Cord Injury (SCI) Guidelines. https://andeal.org/topic.cfm?menu=5292&pcat=3487&cat=5448 (accessed August 2020).Google Scholar
Sabour, H, Soltani, Z, Latifi, S, et al. (2016) Dietary pattern as identified by factorial analysis and its association with lipid profile and fasting plasma glucose among Iranian individuals with spinal cord injury. J Spinal Cord Med 39, 433442.CrossRefGoogle ScholarPubMed
Kolpek, JH, Ott, LG, Record, KE, et al. (1989) Comparison of urinary urea nitrogen excretion and measured energy expenditure in spinal cord injury and nonsteroid-treated severe head trauma patients. JPEN J Parenter Enteral Nutr 13, 277280.CrossRefGoogle ScholarPubMed
Rodriguez, DJ, Clevenger, FW, Osler, TM, et al. (1991) Obligatory negative nitrogen balance following spinal cord injury. J Parenter Enteral Nutr 15, 319322.CrossRefGoogle ScholarPubMed
Beutler, B (1990) The tumor necrosis factors: cachectin and lymphotoxin. Hosp Pract 25, 4556.CrossRefGoogle ScholarPubMed
Tator, CH, van der Jagt, RH & Malkin, A (1982) The effect of acute spinal cord compression injury on thyroid function in the rat. Surg Neurol 18, 6468.CrossRefGoogle ScholarPubMed
Todd, SR, Gonzalez, EA, Turner, K, et al. (2008) Update on postinjury nutrition. Curr Opin Crit Care 14, 690695.CrossRefGoogle ScholarPubMed
Allison, DJ, Beaudry, KM, Thomas, AM, et al. (2018) Changes in nutrient intake and inflammation following an anti-inflammatory diet in spinal cord injury. J Spinal Cord Med 42, 768777.CrossRefGoogle ScholarPubMed
Abilmona, SM & Gorgey, AS (2018) Associations of the trunk skeletal musculature and dietary intake to biomarkers of cardiometabolic health after spinal cord injury. Clin Physiol Funct Imaging 38, 949958.CrossRefGoogle Scholar
Chen, Y, Henson, S, Jackson, AB, et al. (2006) Obesity intervention in persons with spinal cord injury. Spinal Cord 44, 8291.CrossRefGoogle ScholarPubMed
Silveira, SL, Winter, LL, Clark, R, et al. (2018) Baseline dietary intake of individuals with spinal cord injury who are overweight or obese. J Acad Nutr Diet 119, 301309.CrossRefGoogle ScholarPubMed
Edwards, LA, Bugaresti, JM & Buchholz, AC (2008) Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am J Clin Nutr 87, 600607.CrossRefGoogle ScholarPubMed
Walters, JL, Buchholz, AC & Martin Ginis, KA (2009) Evidence of dietary inadequacy in adults with chronic spinal cord injury. Spinal Cord 47, 318322.CrossRefGoogle ScholarPubMed
Sabour, H, Javidan, AN, Vafa, MR, et al. (2012) Calorie and macronutrients intake in people with spinal cord injuries: an analysis by sex and injury-related variables. Nutrition 28, 143147.CrossRefGoogle ScholarPubMed
Sabour, H, Nazari, M, Latifi, S, et al. (2016) The relationship between dietary Intakes of amino acids and bone mineral density among individuals with spinal cord injury. Oman Med J 31, 2228.CrossRefGoogle ScholarPubMed
Sabour, H, Norouzi-Javidan, A, Soltani, Z, et al. (2016) The correlation between dietary fat intake and blood pressure among people with spinal cord injury. Iran J Neurol 15, 121127.Google ScholarPubMed
Peiffer, SC, Blust, P & Leyson, JF (1981) Nutritional assessment of the spinal cord injured patient. J Am Diet Assoc 78, 501505.CrossRefGoogle ScholarPubMed
Barboriak, JJ, Rooney, CB, El Ghatit, AZ, et al. (1983) Nutrition in spinal cord injury patients. J Am Paraplegia Soc 6, 3236.CrossRefGoogle ScholarPubMed
Inskip, J, Plunet, W, Ramer, L, et al. (2010) Cardiometabolic risk factors in experimental spinal cord injury. J Neurotrauma 27, 275285.CrossRefGoogle ScholarPubMed
Spungen, AM, Adkins, RH, Stewart, CA, et al. (2003) Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol 95, 23982407.CrossRefGoogle ScholarPubMed
Ravelli, MN & Schoeller, DA (2020) Traditional self-reported dietary instruments are prone to inaccuracies and new approaches are needed. Front Nutr 7, 90.CrossRefGoogle ScholarPubMed
Subar, AF, Freedman, LS, Tooze, JA, et al. (2015) Addressing current criticism regarding the value of self-report dietary data. J Nutr 145, 26392645.CrossRefGoogle ScholarPubMed
Levine, AM, Nash, MS, Green, BA, et al. (1992) An examination of dietary intakes and nutritional status of chronic healthy spinal cord injured individuals. Paraplegia 30, 880889.Google ScholarPubMed
Doubelt, I, de Zepetnek, JT, MacDonald, MJ, et al. (2015) Influences of nutrition and adiposity on bone mineral density in individuals with chronic spinal cord injury: a cross-sectional, observational study. Bone Rep 2, 2631.CrossRefGoogle Scholar
Lieberman, J, Goff, D, Hammond, F, et al. (2014) Dietary intake and adherence to the 2010 Dietary Guidelines for Americans among individuals with chronic spinal cord injury: a pilot study. J Spinal Cord Med 37, 751757.CrossRefGoogle ScholarPubMed
Tomey, KM, Chen, DM, Wang, X, et al. (2005) Dietary intake and nutritional status of urban community-dwelling men with paraplegia. Arch Phys Med Rehabil 86, 664671.CrossRefGoogle ScholarPubMed
Krempien, JL & Barr, SI (2011) Risk of nutrient inadequacies in elite Canadian athletes with spinal cord injury. Int J Sport Nutr Exerc Metab 21, 417425.CrossRefGoogle ScholarPubMed
Beal, C, Gorgey, A, Moore, P, et al. (2017) Higher dietary intake of vitamin D may influence total cholesterol and carbohydrate profile independent of body composition in men with chronic spinal cord injury. J Spinal Cord Med 41, 112.Google ScholarPubMed
White, JV, Guenter, P, Jensen, G, et al. (2012) Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: characteristics Recommended for the Identification and Documentation of Adult Malnutrition (undernutrition). J Academy Nutr Diet 112, 730738.CrossRefGoogle Scholar
Delliere, S & Cynober, L (2017) Is transthyretin a good marker of nutritional status? Clin Nutr 36, 364370.CrossRefGoogle ScholarPubMed
Freitas, R, Hessel, G, Vasques, ACJ, et al. (2018) Transthyretin levels: potential biomarker for monitoring nutritional support efficacy and clinical complications risk in patients receiving parenteral nutrition. Clin Nutr Espen 24, 134139.Google Scholar
Keller, U (2019) Nutritional laboratory markers in malnutrition. J Clin Med 8, 775.CrossRefGoogle ScholarPubMed
Ranasinghe, RN, Biswas, M & Vincent, RP (2020) Prealbumin: the clinical utility and analytical methodologies. Ann Clin Biochem (In the Press).CrossRefGoogle ScholarPubMed
Lussi, C, Frotzler, A, Jenny, A, et al. (2018) Nutritional blood parameters and nutritional risk screening in patients with spinal cord injury and deep pressure ulcer-a retrospective chart analysis. Spinal Cord 56, 168175.CrossRefGoogle ScholarPubMed
Della Pepa, G, Vetrani, C, Vitale, M, et al. (2018) Wholegrain intake and risk of type 2 diabetes: evidence from epidemiological and intervention studies. Nutrients 10, 1288.CrossRefGoogle ScholarPubMed
Sabour, H, Larijani, B, Vafa, MR, et al. (2012) The effects of n-3 fatty acids on inflammatory cytokines in osteoporotic spinal cord injured patients: a randomized clinical trial. J Res Med Sci 17, 322327.Google ScholarPubMed
Moussavi, RM, Ribas-Cardus, F, Rintala, DH, et al. (2001) Dietary and serum lipids in individuals with spinal cord injury living in the community. J Rehabil Res Dev 38, 225233.Google ScholarPubMed
Golay, A & Bobbioni, E (1997) The role of dietary fat in obesity. Int J Obes Relat Metab Disord 21, S2S11.Google ScholarPubMed
Willett, WC, Koplan, JP, Nugent, R, et al. (2006) Prevention of Chronic Disease by Neans of Diet and Lifestyle Changes. Disease Control Priorities in Developing Countries, 2nd ed. Washington, DC: Oxford University Press.Google Scholar
Cederbaum, A (2012) Alcohol metabolism. Clin Liver Dis 16, 667685.CrossRefGoogle ScholarPubMed
Garrison, A, Clifford, K, Gleason, SF, et al. (2004) Alcohol use associated with cervical spinal cord injury. J Spinal Cord Med 27, 111115.CrossRefGoogle ScholarPubMed
Frisbie, JH & Tun, CG (1984) Drinking and spinal cord injury. J Am Paraplegia Soc 7, 7173.Google ScholarPubMed
Tate, DG, Forchheimer, MB, Krause, JS, et al. (2004) Patterns of alcohol and substance use and abuse in persons with spinal cord injury: risk factors and correlates. Arch Phys Med Rehabil 85, 18371847.CrossRefGoogle ScholarPubMed
Saunders, L & Krause, J (2011) Psychological factors affecting alcohol use after spinal cord injury. Spinal Cord 49, 637642.CrossRefGoogle ScholarPubMed
Knight, KH, Buchholz, AC, Martin Ginis, KA, et al. (2011) Leisure-time physical activity and diet quality are not associated in people with chronic spinal cord injury. Spinal Cord 49, 381385.CrossRefGoogle Scholar
Cameron, KJ, Nyulasi, IB, Collier, GR, et al. (1996) Assessment of the effect of increased dietary fibre intake on bowel function in patients with spinal cord injury. Spinal Cord 34, 277283.CrossRefGoogle ScholarPubMed
Sciarra, MB, Anna Lucia, F, Elisabetta, B, et al. (2020) Diet in neurogenic bowel management: a viewpoint on spinal cord injury. World J Gastroenterol 26, 24792497.Google Scholar
Javidan, AN, Sabour, H, Latifi, S, et al. (2014) Calcium and vitamin D plasma concentration and nutritional intake status in patients with chronic spinal cord injury: a referral center report. J Res Med Sci 19, 881884.Google ScholarPubMed
Opperman, EA, Buchholz, AC, Darlington, GA, et al. (2010) Dietary supplement use in the spinal cord injury population. Spinal Cord 48, 6064.CrossRefGoogle ScholarPubMed
Wong, S, Graham, A, Green, D, et al. (2013) Nutritional supplement usage in patients admitted to a spinal cord injury center. J Spinal Cord Med 36, 645651.CrossRefGoogle ScholarPubMed
McMillan, DW, Nash, MS, Gater, DR, et al. (2021) Neurogenic obesity and skeletal pathology in spinal cord injury. Top Spinal Cord Inj Rehabil 27, 5767.CrossRefGoogle ScholarPubMed
Bird, JK, Murphy, RA, Ciappio, ED, et al. (2017) Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients 9, 655.CrossRefGoogle ScholarPubMed
Frisbie, JH (2010) Anemia and hypoalbuminemia of chronic spinal cord injury: prevalence and prognostic significance. Spinal Cord 48, 566569.CrossRefGoogle ScholarPubMed
Kruger, EA, Pires, M, Ngann, Y, et al. (2013) Comprehensive management of pressure ulcers in spinal cord injury: current concepts and future trends. J Spinal Cord Med 36, 572585.CrossRefGoogle ScholarPubMed
Khalil, RE, Gorgey, AS, Janisko, M, et al. (2012) The role of nutrition in health status after spinal cord injury. Aging Dis 4, 1422.Google ScholarPubMed
Tonstad, S, Butler, T, Yan, R, et al. (2009) Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32, 791796.CrossRefGoogle ScholarPubMed
Fardet, A & Boirie, Y (2014) Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev 72, 741762.CrossRefGoogle ScholarPubMed
Kim, H, Caulfield, LE, Garcia-Larsen, V, et al. (2019) Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc 8, e012865.CrossRefGoogle Scholar
Nash, MS & Gater, DR (2020) Cardiometabolic disease and dysfunction following spinal cord injury: origins and guideline-based countermeasures. Phys Med Rehabil Clin Am 31, 415436.CrossRefGoogle ScholarPubMed
Gorgey, AS, Dolbow, DR, Dolbow, JD, et al. (2014) Effects of spinal cord injury on body composition and metabolic profile – part I. J Spinal Cord Med 37, 693702.CrossRefGoogle ScholarPubMed
Gater, DR & Farkas, GJ (2016) Alterations in body composition after SCI and the mitigating role of exercise. In The Physiology of Exercise in Spinal Cord Injury, pp. 175198 [Taylor, J, editor]. Boston, MA: Springer.CrossRefGoogle Scholar
Keshavarzian, A, Barnes, WE, Bruninga, K, et al. (1995) Delayed colonic transit in spinal cord-injured patients measured by in-111 amberlite scintigraphy. Am J Gastroenterol 90, 12951300.Google Scholar
1
Cited by