Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-x2fkq Total loading time: 0.882 Render date: 2022-12-03T04:02:34.312Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Bowel habits, faecal microbiota and faecal bile acid composition of healthy adults consuming fruit pomace fibres: two-arm, randomised, double-blinded, placebo-controlled trials

Published online by Cambridge University Press:  14 September 2022

Celeste Alexander
Affiliation:
Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
Mary Brauchla
Affiliation:
PepsiCo, Inc., Chicago, IL, USA
Kristen D. Sanoshy
Affiliation:
Biofortis, Mérieux NutriSciences, Addison, IL, USA
Traci M. Blonquist
Affiliation:
Biofortis, Mérieux NutriSciences, Addison, IL, USA
Grace N. Maloney
Affiliation:
Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
Eunice Mah
Affiliation:
Biofortis, Mérieux NutriSciences, Addison, IL, USA
Kathleen Kelley-Garvin
Affiliation:
Biofortis, Mérieux NutriSciences, Addison, IL, USA
Oliver Chen
Affiliation:
Biofortis, Mérieux NutriSciences, Addison, IL, USA
DeAnn J. Liska
Affiliation:
Biofortis, Mérieux NutriSciences, Addison, IL, USA
Jin-E Shin
Affiliation:
PepsiCo, Inc., Chicago, IL, USA
Thomas W. Boileau
Affiliation:
PepsiCo, Inc., Chicago, IL, USA
Kelly S. Swanson*
Affiliation:
Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
*
*Corresponding author: Dr K. S. Swanson, email ksswanso@illinois.edu

Abstract

Dietary fibre modulates gastrointestinal (GI) health and function, providing laxation, shifting microbiota, and altering bile acid (BA) metabolism. Fruit juice production removes the polyphenol- and fibre-rich pomace fraction. The effects of orange and apple pomaces on GI outcomes were investigated in healthy, free-living adults. Healthy adults were enrolled in two double-blinded, crossover trials, being randomised by baseline bowel movement (BM) frequency. In the first trial, subjects (n 91) received orange juice (OJ, 0 g fibre/d) or OJ + orange pomace (OJ + P, 10 g fibre/d) for 4 weeks, separated by a 3-week washout. Similarly, in the second trial, subjects (n 90) received apple juice (AJ, 0 g fibre/d) or AJ + apple pomace (AJ + P, 10 g fibre/d). Bowel habit diaries, GI tolerance surveys and 3-d diet records were collected throughout. Fresh faecal samples were collected from a participant subset for microbiota and BA analyses in each study. Neither pomace interventions influenced BM frequency. At Week 4, OJ + P tended to increase (P = 0·066) GI symptom occurrence compared with OJ, while AJ + P tended (P = 0·089) to increase flatulence compared with AJ. Faecalibacterium (P = 0·038) and Negativibacillus (P = 0·043) were differentially abundant between pre- and post-interventions in the apple trial but were no longer significant after false discovery rate (FDR) correction. Baseline fibre intake was independently associated with several microbial genera in both trials. Orange or apple pomace supplementation was insufficient to elicit changes in bowel habits, microbiota diversity or BA of free-living adults with healthy baseline BM. Future studies should consider baseline BM frequency and habitual fibre intake.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoy, MK & Goldman, JD (2014) Fiber Intake of the U.S. Population: What We Eat in America, NHANES 2009–2010. Food Surveys Research Group Dietary Data Brief No. 12. Beltsville, MD: Food Surveys Research Group.Google Scholar
U.S. Department of Health and Human Services & U.S. Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans, 8th ed. Washington, DC: The United States Department of Agriculture.Google Scholar
Yao, B, Fang, H, Xu, W, et al. (2014) Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol 29, 7988.CrossRefGoogle ScholarPubMed
Dahm, CC, Keogh, RH, Spencer, EA, et al. (2010) Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries. J Natl Cancer Inst 102, 614626.CrossRefGoogle ScholarPubMed
Bazzano, LA, He, J, Ogden, LG, et al. (2003) Dietary fiber intake and reduced risk of coronary heart disease in US men and women. Arch Intern Med 163, 1897.CrossRefGoogle ScholarPubMed
Liu, X, Wu, Y, Li, F, et al. (2015) Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutr Res 35, 753758.CrossRefGoogle ScholarPubMed
Müller, M, Canfora, EE & Blaak, EE (2018) Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients 10, 275.CrossRefGoogle ScholarPubMed
Yang, J, Wang, HP, Zhou, L, et al. (2012) Effect of dietary fiber on constipation: a meta analysis. World J Gastroenterol 18, 73787383.CrossRefGoogle ScholarPubMed
Mamma, D & Christakopoulos, P (2014) Biotransformation of citrus by-products into value added products. Waste Biomass Valor 5, 529549.CrossRefGoogle Scholar
Grigelmo-Miguel, N & Martín-Belloso, O (1999) Characterization of dietary fiber from orange juice extraction. Food Res Int 31, 355361.CrossRefGoogle Scholar
United States Food and Drug Administration (2018) The Declaration of Certain Isolated or Synthetic Non-Digestible Carbohydrates as Dietary Fiber on Nutrition and Supplement Facts Labels; Guidance for Industry. Washington, DC: Food and Drug Administration, Health and Human Services.Google Scholar
Lu, Y & Yeap Foo, L (2000) Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 68, 8185.CrossRefGoogle Scholar
Alexander, C, Swanson, KS, Fahey, GCJ, et al. (2019) Perspective: physiological importance of short-chain fatty acids from non-digestible carbohydrate fermentation. Adv Nutr 10, 576589.CrossRefGoogle Scholar
Dennis-Wall, JC, Burns, AM, Solch, RJ, et al. (2019) A beverage containing orange pomace improves laxation and modulates the microbiome in healthy adults: a randomised, blinded, controlled trial. J Funct Foods 60, 103438.CrossRefGoogle Scholar
Spiller, GA, Chernoff, MC, Hill, RA, et al. (1980) Effect of purified cellulose, pectin, and a low-residue diet on fecal volatile fatty acids, transit time, and fecal weight in humans. Am J Clin Nutr 33, 754759.CrossRefGoogle Scholar
Vandeputte, D, Falony, G, Vieira-Silva, S, et al. (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 5762.CrossRefGoogle ScholarPubMed
Ridlon, JM, Kang, D-J & Hylemon, PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47, 241259.CrossRefGoogle ScholarPubMed
Ridlon, JM, Harris, SC, Bhowmik, S, et al. (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 2239.CrossRefGoogle ScholarPubMed
Appleby, RN & Walters, JRF (2014) The role of bile acids in functional GI disorders. Neurogastroenterol Motil 26, 10571069.CrossRefGoogle ScholarPubMed
Jia, W, Xie, G & Jia, W (2018) Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15, 111128.CrossRefGoogle ScholarPubMed
Lewis, SJ & Heaton, KW (1997) Stool Form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 32, 920924.CrossRefGoogle ScholarPubMed
Vester Boler, BM, Rossoni Serao, MC, Bauer, LL, et al. (2011) Digestive physiological outcomes related to polydextrose and soluble maize fibre consumption by healthy adult men. Br J Nutr 106, 18641871.CrossRefGoogle Scholar
Alexander, C, Cross, T-WL, Devendran, S, et al. (2018) Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br J Nutr 120, 711720.CrossRefGoogle ScholarPubMed
Bolyen, E, Rideout, JR, Dillon, MR, et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852857.CrossRefGoogle ScholarPubMed
Callahan, BJ, McMurdie, PJ, Rosen, MJ, et al. (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581583.CrossRefGoogle ScholarPubMed
Quast, C, Pruesse, E, Yilmaz, P, et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590D596.CrossRefGoogle ScholarPubMed
Lozupone, C & Knight, R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71, 82288235.CrossRefGoogle ScholarPubMed
Blake, AB, Guard, BC, Honneffer, JB, et al. (2019) Altered microbiota, fecal lactate, and fecal bile acids in dogs with gastrointestinal disease. PLOS ONE 14, e0224454.CrossRefGoogle ScholarPubMed
Zheng, X, Huang, F, Zhao, A, et al. (2017) Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol 15, 120.Google ScholarPubMed
Mallick, H, Rahnavard, A, McIver, LJ, et al. (2021) Multivariable association discovery in population-scale meta-omics studies. PLOS Comput Biol 17, e1009442.CrossRefGoogle ScholarPubMed
R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Burkitt, DP (1973) Some diseases characteristic of modern western civilization. BMJ 3, 274278.CrossRefGoogle Scholar
O’Keefe, SJ (2019) The association between dietary fibre deficiency and high- income lifestyle-associated diseases: Burkitt’s hypothesis revisited. Lancet Gastroenterol Hepatol 4, 984996.CrossRefGoogle ScholarPubMed
Fleming, SE, Marthinsen, D & Kuhnlein, H (1983) Colonic function and fermentation in men consuming high fiber diets. J Nutr 113, 25352544.CrossRefGoogle ScholarPubMed
Cummings, JH, Southgate, DAT, Branch, WJ, et al. (1979) The digestion of pectin in the human gut and its effect on calcium absorption and large bowel function. Br J Nutr 41, 477485.CrossRefGoogle ScholarPubMed
Wallace, AJ, Eady, SL, Hunter, DC, et al. (2015) No difference in fecal levels of bacteria or short chain fatty acids in humans, when consuming fruit juice beverages containing fruit fiber, fruit polyphenols, and their combination. Nutr Res 35, 2334.CrossRefGoogle ScholarPubMed
Micka, A, Siepelmeyer, A, Holz, A, et al. (2017) Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial. Int J Food Sci Nutr 68, 8289.CrossRefGoogle ScholarPubMed
Holscher, HD, Doligale, JL, Bauer, LL, et al. (2014) Gastrointestinal tolerance and utilization of agave inulin by healthy adults. Food Funct 5, 11421149.CrossRefGoogle ScholarPubMed
Hess, JR, Birkett, AM, Thomas, W, et al. (2011) Effects of short-chain fructooligosaccharides on satiety responses in healthy men and women. Appetite 56, 128134.CrossRefGoogle ScholarPubMed
Bonnema, AL, Kolberg, LW, Thomas, W, et al. (2010) Gastrointestinal tolerance of chicory inulin products. J Am Diet Assoc 110, 865868.CrossRefGoogle ScholarPubMed
Swanson, KS, Grieshop, CM, Clapper, GM, et al. (2001) Fruit and vegetable fiber fermentation by gut microflora from canines. J Anim Sci 79, 919926.CrossRefGoogle ScholarPubMed
Shtriker, MG, Hahn, M, Taieb, E, et al. (2018) Fenugreek galactomannan and citrus pectin improve several parameters associated with glucose metabolism and modulate gut microbiota in mice. Nutrition 46, 134142.CrossRefGoogle ScholarPubMed
de Brito, CBM, Menezes Souza, CM, Bastos, TS, et al. (2021) Effect of dietary inclusion of dried apple pomace on faecal butyrate concentration and modulation of gut microbiota in dogs. Arch Anim Nutr 75, 4863.CrossRefGoogle ScholarPubMed
Lopez-Siles, M, Duncan, SH, Garcia-Gil, LJ, et al. (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11, 841852.CrossRefGoogle ScholarPubMed
Healey, G, Murphy, R, Butts, C, et al. (2018) Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr 119, 176189.CrossRefGoogle Scholar
Singh, J, Metrani, R, Shivanagoudra, SR, et al. (2019) Review on bile acids: effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds. J Agric Food Chem 67, 91249138.CrossRefGoogle ScholarPubMed
Ross, JK & Leklem, JE (1981) The effect of dietary citrus pectin on the excretion of human fecal neutral and acid steroids and the activity of 7α-dehydroxylase and β-glucuronidase. Am J Clin Nutr 34, 20682077.CrossRefGoogle ScholarPubMed
Miettinen, TA & Tarpila, S (1977) Effect of pectin on serum cholesterol, fecal bile acids and biliary lipids in normolipidemic and hyperlipidemic individuals. Clin Chim Acta 79, 471477.CrossRefGoogle ScholarPubMed
Sembries, S, Dongowski, G, Mehrländer, K, et al. (2004) Dietary fiber-rich colloids from apple pomace extraction juices do not affect food intake and blood serum lipid levels, but enhance fecal excretion of steroids in rats. J Nutr Biochem 15, 296302.CrossRefGoogle Scholar
Dominianni, C, Sinha, R, Goedert, JJ, et al. (2015) Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLOS ONE 10, 114.CrossRefGoogle ScholarPubMed
Reddy, BS, Engle, A, Simi, B, et al. (1988) Effect of low-fat, high-carbohydrate, high-fiber diet on fecal bile acids and neutral sterols. Prev Med 17, 432439.CrossRefGoogle ScholarPubMed
Nagengast, FM, van den Ban, G, Ploemen, JP, et al. (1993) The effect of a natural high-fibre diet on faecal and biliary bile acids, faecal pH and whole-gut transit time in man. A controlled study. Eur J Clin Nutr 47, 631639.Google Scholar
Supplementary material: File

Alexander et al. supplementary material

Tables S1-S11

Download Alexander et al. supplementary material(File)
File 54 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bowel habits, faecal microbiota and faecal bile acid composition of healthy adults consuming fruit pomace fibres: two-arm, randomised, double-blinded, placebo-controlled trials
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Bowel habits, faecal microbiota and faecal bile acid composition of healthy adults consuming fruit pomace fibres: two-arm, randomised, double-blinded, placebo-controlled trials
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Bowel habits, faecal microbiota and faecal bile acid composition of healthy adults consuming fruit pomace fibres: two-arm, randomised, double-blinded, placebo-controlled trials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *