Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-xdhtr Total loading time: 0.209 Render date: 2021-06-24T10:43:23.519Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Associations between different measurements of sarcopenic obesity and health outcomes among non-frail community-dwelling older adults in Taiwan

Published online by Cambridge University Press:  14 April 2021

Tao-Chun Peng
Affiliation:
Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (Republic of China) Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taiwan
Wei-Liang Chen
Affiliation:
Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (Republic of China) Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taiwan Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan 4
Yuan-Yuei Chen
Affiliation:
Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (Republic of China) Department of Pathology, Tri-Service General Hospital Songshan Branch, and School of Medicine, National Defense Medical Center, Taipei, Taiwan
Yuan-Ping Chao
Affiliation:
Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (Republic of China)
Li-Wei Wu
Affiliation:
Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (Republic of China) Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taiwan Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan 4
Tung-Wei Kao
Affiliation:
Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan (Republic of China) Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taiwan
Corresponding
E-mail address:

Abstract

The most important issue for the clinical application of sarcopenic obesity (SO) is the lack of a consensus definition. The aim of the present study was to determine the best measurement for SO by estimating the association between various definitions and the risk of falls and metabolic syndrome (MS). We studied a community of 765 adults aged 65 years and older in 2015–2017. Sarcopenia obesity was measured by sarcopenia (defined by low muscle mass with either low handgrip strength or low gait speed or both) plus obesity (defined by waist circumference, body fat percentage and BMI). The MS was defined according to the National Cholesterol Education Program ATP III. Logistic regression models were constructed to examine the relationships between sarcopenia obesity and risk of fall and MS. In the analysis of the fall risk with SO defined by waist circumference, the participants with non-sarcopenia/non-obesity were treated as the reference group. The OR to fall in participants with SO was 10·16 (95 % CI 2·71, 38·13) after adjusting for confounding covariates. In the analysis of the risk of the MS between participants with individual components of sarcopenia coupled with obesity defined by waist circumference, the risk was statistically significant for low gait speed (OR: 7·19; 95 % CI 3·61, 14·30) and low grip strength (OR: 9·19; 95 % CI 5·00, 16·91). A combination of low grip strength and abdominal obesity for identifying SO may be a more precise and practical method for predicting target populations with unfavourable health risks, such as falls risk and MS.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below.

References

Janssen, I, Heymsfield, SB & Ross, R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50, 889896.CrossRefGoogle ScholarPubMed
Rosenberg, IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127, 990S991S.CrossRefGoogle ScholarPubMed
Kamel, HK (2003) Sarcopenia and aging. Nutr Rev 61, 157167.CrossRefGoogle ScholarPubMed
Newman, AB, Kupelian, V, Visser, M, et al. (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51, 16021609.CrossRefGoogle ScholarPubMed
Flegal, KM, Shepherd, JA, Looker, AC, et al. (2009) Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr 89, 500508.CrossRefGoogle ScholarPubMed
Oreopoulos, A, Kalantar-Zadeh, K, Sharma, AM, et al. (2009) The obesity paradox in the elderly: potential mechanisms and clinical implications. Clin Geriatr Med 25, 643659.CrossRefGoogle ScholarPubMed
Winter, JE, MacInnis, RJ, Wattanapenpaiboon, N, et al. (2014) BMI and all-cause mortality in older adults: a meta-analysis. Am J Clin Nutr 99, 875890.CrossRefGoogle ScholarPubMed
Javed, AA, Aljied, R, Allison, DJ, et al. (2020) Body mass index and all-cause mortality in older adults: a scoping review of observational studies. Obes Rev 21, e13035.CrossRefGoogle ScholarPubMed
Adams, KF, Schatzkin, A, Harris, TB, et al. (2006) Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 355, 763778.CrossRefGoogle Scholar
Butler, J, Rodondi, N, Zhu, Y, et al. (2006) Metabolic syndrome and the risk of cardiovascular disease in older adults. J Am Coll Cardiol 47, 15951602.CrossRefGoogle ScholarPubMed
Prado, CM, Wells, JC, Smith, SR, et al. (2012) Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr 31, 583601.CrossRefGoogle ScholarPubMed
Atkins, JL, Whincup, PH, Morris, RW, et al. (2014) Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc 62, 253260.CrossRefGoogle ScholarPubMed
Levine, ME & Crimmins, EM (2012) The impact of insulin resistance and inflammation on the association between sarcopenic obesity and physical functioning. Obesity 20, 21012106.CrossRefGoogle ScholarPubMed
Chen, LK, Liu, LK, Woo, J, et al. (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15, 95101.CrossRefGoogle Scholar
Cruz-Jentoft, AJ, Bahat, G, Bauer, J, et al. (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 1631.CrossRefGoogle ScholarPubMed
Donini, LM, Busetto, L, Bauer, JM, et al. (2020) Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin Nutr 39, 23682388.CrossRefGoogle ScholarPubMed
Khor, EQ, Lim, JP, Tay, L, et al. (2020) Obesity definitions in sarcopenic obesity: differences in prevalence, agreement and association with muscle function. J Frailty Aging 9, 3743.Google ScholarPubMed
Bhasin, S, Travison, TG, Manini, TM, et al. (2020) Sarcopenia definition: the position statements of the Sarcopenia definition and outcomes consortium. J Am Geriatr Soc 68, 14101418.CrossRefGoogle ScholarPubMed
Seidell, JC & Visscher, TL (2000) Body weight and weight change and their health implications for the elderly. Eur J Clin Nutr 3, S33S39.CrossRefGoogle Scholar
Batsis, JA & Cook, SB (2017) Is the whole not greater than the sum of its parts? The case of sarcopenic obesity. Am J Clin Nutr 106, 1415.CrossRefGoogle ScholarPubMed
Cruz-Jentoft, AJ, Baeyens, JP, Bauer, JM, et al. (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412423.CrossRefGoogle ScholarPubMed
Chang, CJ, Wu, CH, Chang, CS, et al. (2003) Low body mass index but high percent body fat in Taiwanese subjects: implications of obesity cutoffs. Int J Obes Relat Metab Disord 27, 253259.CrossRefGoogle ScholarPubMed
Ervin, RB (2009) Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat Report 1–7.Google Scholar
Alberti, KG, Eckel, RH, Grundy, SM, et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 16401645.CrossRefGoogle Scholar
Qu, NN & Li, KJ (2004) Study on the reliability and validity of international physical activity questionnaire (Chinese Version, IPAQ). Zhonghua Liu Xing Bing Xue Za Zhi 25, 265268.Google Scholar
Cao, L & Morley, JE (2016) Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J Am Med Dir Assoc 17, 675677.CrossRefGoogle ScholarPubMed
Jaacks, LM, Vandevijvere, S, Pan, A, et al. (2019) The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol 7, 231240.CrossRefGoogle ScholarPubMed
Zamboni, M, Rubele, S & Rossi, AP (2019) Sarcopenia and obesity. Curr Opin Clin Nutr Metab Care 22, 1319.CrossRefGoogle ScholarPubMed
Villareal, DT, Aguirre, L, Gurney, AB, et al. (2017) Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med 376, 19431955.CrossRefGoogle ScholarPubMed
Follis, S, Cook, A, Bea, JW, et al. (2018) Association between Sarcopenic obesity and falls in a multiethnic cohort of postmenopausal women. J Am Geriatr Soc 66, 23142320.CrossRefGoogle Scholar
Consultation WHOE (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363, 157163.CrossRefGoogle Scholar
Hainer, V & Aldhoon-Hainerova, I (2013) Obesity paradox does exist. Diabetes Care 2, S276S281.CrossRefGoogle Scholar
Lu, CW, Yang, KC, Chang, HH, et al. (2013) Sarcopenic obesity is closely associated with metabolic syndrome. Obes Res Clin Pract 7, e301e307.CrossRefGoogle ScholarPubMed
Park, SH, Park, JH, Park, HY, et al. (2014) Additional role of sarcopenia to waist circumference in predicting the odds of metabolic syndrome. Clin Nutr 33, 668672.CrossRefGoogle ScholarPubMed
Peng, TC, Wu, LW, Chen, WL, et al. (2019) Nonalcoholic fatty liver disease and sarcopenia in a Western population (NHANES III): The importance of sarcopenia definition. Clin Nutr 38, 422428.CrossRefGoogle Scholar
Scott, D, Sanders, KM, Aitken, D, et al. (2014) Sarcopenic obesity and dynapenic obesity: 5-year associations with falls risk in middle-aged and older adults. Obesity 22, 15681574.CrossRefGoogle ScholarPubMed
Supplementary material: File

Peng et al. supplementary material

Peng et al. supplementary material

Download Peng et al. supplementary material(File)
File 22 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Associations between different measurements of sarcopenic obesity and health outcomes among non-frail community-dwelling older adults in Taiwan
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Associations between different measurements of sarcopenic obesity and health outcomes among non-frail community-dwelling older adults in Taiwan
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Associations between different measurements of sarcopenic obesity and health outcomes among non-frail community-dwelling older adults in Taiwan
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *